
1

hp Unified Correlation Analyzer

Unified Correlation Analyzer
for Event Based Correlation

Inference Machine

User Guide

Version 3.2

Edition: 1.0

April 2015

© Copyright 2015 Hewlett-Packard Development Company, L.P.

2

Legal Notices

Warranty

The information contained herein is subject to change without notice. The only
warranties for HP products and services are set forth in the express warranty
statements accompanying such products and services. Nothing herein should be
construed as constituting an additional warranty. HP shall not be liable for
technical or editorial errors or omissions contained herein.

License Requirement and U.S. Government Legend

Confidential computer software. Valid license from HP required for possession, use
or copying. Consistent with FAR 12.211 and 12.212, Commercial Computer
Software, Computer Software Documentation, and Technical Data for Commercial
Items are licensed to the U.S. Government under vendor's standard commercial
license.

Copyright Notices

© Copyright 2015 Hewlett-Packard Development Company, L.P.

Trademark Notices

Adobe®, Acrobat® and PostScript® are trademarks of Adobe Systems Incorporated.

HP-UX Release 10.20 and later and HP-UX Release 11.00 and later (in both 32 and
64-bit configurations) on all HP 9000 computers are Open Group UNIX 95 branded
products.

Java™ is a trademark of Oracle and/or its affiliates.

Microsoft®, Internet Explorer, Windows®, Windows Server®, and Windows NT® are
either registered trademarks or trademarks of Microsoft Corporation in the United
States and/or other countries.

Oracle® is a registered U.S. trademark of Oracle Corporation, Redwood City,
California.

UNIX® is a registered trademark of The Open Group.

X/Open® is a registered trademark, and the X device is a trademark of X/Open
Company Ltd. in the UK and other countries.

Red Hat® is a registered trademark of the Red Hat Company.

Linux® is a registered trademark of Linus Torvalds in the U.S. and other countries.

3

Contents
Preface .. 9

Chapter 1 ... 12

Inference Machine: a quick tour .. 12

1.1 Context .. 12
1.2 Naming disambiguation .. 12
1.3 Basic concepts ... 13
1.3.1 Inference Machine ... 13
1.3.2 Problem Detection... 14
1.3.3 Topology State Propagator ... 15
1.4 Licensing ... 16

Chapter 2.. 17

General Features... 17

2.1 Root Cause and Service Impact Analysis .. 17
2.2 Events grouping .. 18
2.3 Lifecycle .. 21
2.4 Automatic actions ... 21
2.5 Automatic Trouble Ticketing... 21
2.6 Cross domain correlation .. 21
2.7 Event enrichment .. 22
2.8 Performance ... 22
2.9 Robustness.. 23
2.10 Ease of use .. 23
2.11 Simulation ... 23

Chapter 3.. 24

Architecture ... 24

3.1 Inference Machine ... 24
3.2 Problem Detection .. 25
3.3 Topology State Propagator .. 25
3.4 A common library .. 26
3.4.1 Actions Factory .. 26
3.4.2 Lifecycle class for State and other Events .. 27
3.4.3 Interfaces ... 27

Chapter 4.. 28

The IM scenarios explained .. 28

4.1 Problem Detection .. 28
4.1.1 Its role in brief ... 28
4.1.2 Its main feature ... 28
4.1.3 Alarm state propagation ... 29
4.2 Topology State Propagator .. 30
4.2.1 Its role in brief ... 30
4.2.2 Its main feature ... 30

4

4.2.3 Alarm state propagation ... 31

Chapter 5.. 32

Configuration ... 32

5.1 Value Pack ... 32
5.2 Inference Machine ... 32
5.2.1 Actions to NMS ... 33
5.2.2 Trouble Ticket Actions ... 36
5.3 Problem Detection .. 37
5.3.1 Filters, tags and mappers .. 37
5.3.2 Specific configuration .. 38
5.4 Topology State Propagator .. 45
5.4.1 Filters, tags and mappers .. 45
5.4.2 Specific configuration .. 46
5.5 Orchestra ... 50

Chapter 6.. 51

Developing an IM Value Pack .. 51

6.1 Eclipse Plugins .. 51
6.1.1 Problem Detection only Value Pack .. 52
6.1.2 UCA EBC Topology State PropagatorTopology State Propagator only Value Pack54
6.1.3 Inference Machine Value Pack ... 55
6.2 Understanding the Use Cases ... 55
6.3 Create a Simple PD VP ... 55
6.3.1 Analyze the problems to be detected ... 56
6.3.2 Identify the different types of alarms ... 56
6.3.3 Configure the Time Window .. 57
6.3.4 Create a Problem Alarm? ... 57
6.3.5 Create a Trouble Ticket? .. 58
6.3.6 Is the default behavior good enough? .. 58
6.3.7 Define the Filters ... 58
6.3.8 Configure Value Pack... 62
6.3.9 Configure specific settings .. 63
6.3.10 Customize the behavior... 63
6.4 Create a Simple TSP VP ... 64
6.4.1 Analyze the topology to be used and the propagations to be detected 64
6.4.2 Compute a State? .. 65
6.4.3 Identify the different types of alarms: Root Cause or Sub Alarms 65
6.4.4 Create a Service Alarm? ... 66
6.4.5 Create a Trouble Ticket? .. 66
6.4.6 Define the Filters ... 66
6.4.7 Configure Value Pack... 70
6.4.8 Configure specific settings .. 72
6.5 Create a Standard IM VP .. 72

Chapter 7.. 73

Advanced features of Problem Detection .. 73

7.1 The default behavior explained .. 73
7.1.1 Example ... 73

5

7.1.2 Alarm Role Check ... 75
7.1.3 EventRoleCheck ... 75
7.1.4 Problem Alarm Creation .. 75
7.1.5 Common Entity Check ... 76
7.1.6 Group update ... 78
7.1.7 Network State Update ... 79
7.1.8 Operator State Update .. 80
7.1.9 Problem State Update ... 82
7.1.10 Attribute Update .. 83
7.1.11 Periodic Check ... 84
7.1.12 Alarm eligibility update ... 85
7.1.13 Event eligibility update.. 86
7.1.14 Tags handling .. 87
7.2 Generic Events (other than Alarm types) are supported .. 89
7.3 Computing Problem Information starting V3.2 .. 89
7.3.1 Case where Problem Detection is topology-aware .. 90
7.3.2 Default case (non-topology aware) .. 90
7.3.3 ProblemXmlConfig schema changes .. 90
7.3.4 ProblemDefault.computeProblemEntity(Event event) .. 91
7.3.5 GeneralBehaviourDefault.computeSourceUniqueId(Event event) 93
7.3.6 ProblemDefault.computeDbRecords(String dbUniqueIdReference, Event event)93
7.3.7 ProblemDefault.computeGroupPriority(Event event) .. 94
7.3.8 ProblemDefault.computeTimeWindow(Event event) .. 95
7.4 How to customize default behavior .. 95
7.4.1 XML customization .. 95
7.4.2 Java customization .. 97
7.4.3 My ProblemDefault ... 102
7.4.4 Problems initialization starting V3.2 .. 102
7.4.5 MyGeneralBehavior ... 107
7.4.6 Enrichment .. 108

Chapter 8.. 112

Advanced features of Topology State Propagator ... 112

8.1 The default behavior explained .. 112
8.1.1 Example ... 112
8.1.2 Event Role Check ... 115
8.1.3 State Creation .. 115
8.1.4 Service Alarm Creation and Clearance .. 115
8.1.5 Common Entity Check ... 115
8.1.6 PropagationGroup update ... 115
8.1.7 Network State Update ... 117
8.1.8 Operator State Update .. 118
8.1.9 Alarm Attribute Update ... 120
8.1.10 Periodic Check and General Behavior .. 121
8.1.11 Alarm eligibility update ... 122
8.1.12 State eligibility update .. 123
8.1.13 TroubleTicket update .. 123
8.2 How to customize default behavior .. 124
8.2.1 Java customization .. 124
8.2.2 My PropagationDefault ... 127

6

8.2.3 MyGeneralBehavior ... 131

Chapter 9.. 133

Troubleshooting ... 133

9.1 Logging .. 133

Chapter 10 .. 136

Annexes ... 136

Annex A. ... 137

Migration steps from V3.1 to V3.2 .. 137

Annex B. ... 142

PD Value Pack example .. 142

Annex C. ... 151

PD Advanced customization ... 151

 ... 163

PD Value Pack example with Events Only .. 163

Annex E. ... 164

TSP Value Pack example .. 164

Annex F. ... 165

TSP Advanced customization ... 165

Annex G. ... 166

IM Value Pack example .. 166

7

Tables
Table 1 - Software versions ... 10
Table 2 - Alarm state propagation from Problem Alarm to sub-alarms ... 29
Table 3 - Alarm state propagation from sub-alarms to Problem Alarm ... 29
Table 4 - IM actions configuration ... 33
Table 5 - IM action configuration ... 34
Table 6 – Specific optional IM action configuration for TeMIP .. 35
Table 7 – Specific optional IM action configuration for DB .. 36
Table 8 – IM troubleTicketActions configuration ... 36
Table 9 – IM troubleTicketAction configuration .. 37
Table 10 – Specific optional IM troubleTicketAction configuration for TeMIP 37
Table 11 – Tags for possible roles of an event within PD .. 38
Table 12 – Tags for possible roles of an alarm within PD ... 38
Table 13 – PD mainPolicy attributes .. 39
Table 14 –problemPolicy attributes .. 41
Table 15 – PD problemAlarm per-problem configuration ... 42
Table 16 – PD troubleTicket “per-problem” configuration ... 42
Table 17 – PD computeProblemEntityFromFields “per-problem” configuration 44
Table 18 – PD timeWindow “per-problem” configuration ... 44
Table 19 – PD customized “per-problem” configuration .. 44
Table 20 – Tags for possible roles of an alarm within TSP.. 45
Table 21 – TSP mainPolicy attributes .. 46
Table 22 – TSP serviceAlarm per-propagation configuration ... 47
Table 23 – TSP troubleTicket “per-propagation” configuration ... 48
Table 24 – TSP customized “per-propagation” configuration .. 50
Table 25 – PD: Possible roles for an alarm .. 61
Table 26 – TSP: Possible roles for an alarm .. 70
Table 27 - src/main/java: the customization code for the example Value Pack 143
Table 28 - src/test/java: the source code of the tests .. 145
Table 29 - src/main/resources: the configuration files of the example Value Pack 146
Table 30 - src/test/resources: the tests configuration files ... 148

8

Figures
Figure 1 Inference Machine Value Pack (RCA-SIA pattern) .. 13
Figure 2 – RCA-SIA Pattern ... 17
Figure 3 Notation conventions ... 18
Figure 4 Group (PropagationGroup) : position of Events ... 19
Figure 5 Group already created: example ... 19
Figure 6 PropagationGroup already created: example ... 19
Figure 7 Group to be created: example ... 20
Figure 8 PropagationGroup to be created is empty. ... 20
Figure 9 – Problem Detection solution architecture.. 25
Figure 10 – Topology State Propagator solution architecture .. 26
Figure 11 - Explanation of the candidateVisibilityTimeMode=Max... 40
Figure 12 IM Orchestra configuration example ... 50
Figure 13 - How to create a UCA EBC project in Eclipse ... 51
Figure 14 – Create PD only Value Pack .. 52
Figure 15 - Files to edit to configure MyFirstProblemDetectionValuePack .. 53
Figure 16 – Create TSP only Value Pack... 54
Figure 17 – Create IM Value Pack ... 55
Figure 18 - Time window illustration ... 57
Figure 19 Alarm clearance sequence diagram example .. 74
Figure 20 PD: Alarm clearance example: PD group updates Step1 ... 74
Figure 21 PD: Alarm clearance example: PD group updates Step2 ... 75
Figure 22 - One problem specific customization ... 97
Figure 23 - Consolidation of alarm's qualifiers .. 102
Figure 24 - MyProblemDefault: a customization for a group of problems ... 102
Figure 25 – PD MyGeneralBehavior name matching ... 107
Figure 26 Alarm termination sequence diagram example .. 113
Figure 27 Topology of the example ... 113
Figure 28 TSP: Alarm termination example: TSP group updates Step1 .. 114
Figure 29 TSP: Alarm termination example: TSP group updates Step2 .. 114
Figure 30 - One propagation specific customization ... 124
Figure 31 - MyPropagationDefault: a customization for a group of propagations............................. 127
Figure 32 – TSP MyGeneralBehavior name matching .. 132
Figure 33 - schema of implementation of the main Problem Detection interfaces 152

9

Preface

The intention of this document is to provide information about HP UCA for EBC
Inference Machine.

Product Name: UCA for EBC Inference Machine embeds two licensed products:
UCA EBC Problem Detection and UCA EBC Topology State Propagator.

Product Version: 3.2

Kit Version: V3.2

Intended Audience

The intended audience of this guide is primarily developers (customers or HP
consultants) wanting to understand an UCA for EBC Inference Machine Value Pack
containing Problem Detection and Topology State Propagator scenarios.
This document will also be interesting for anyone wanting to know more about
Inference Machine features

Prerequisites

It is highly recommended to have some basic knowledge of UCA for EBC before
reading this document.

The reader is advised to consult Chapter 1 & 2 of “HP UCA for Event Based
Correlation – Reference Guide” and “HP UCA for Event Based Correlation – Value
Pack Development Guide”

Typographical Conventions

Courier Font:

 Source code and examples of file contents.

 Commands that you enter on the screen.

 Pathnames

 Keyboard key names

Italic Text:

 Filenames, programs and parameters.

 The names of other documents referenced in this manual.

Bold Text:

 To introduce new terms and to emphasize important words.

Associated Documents

The following documents contain useful reference information:

10

References

[R1] Unified Correlation Analyzer for Event Based Correlation Reference Guide

[R2] Unified Correlation Analyzer for Event Based Correlation Value Pack
Development Guide

[R3] Unified Correlation Analyzer for Event Based Correlation Installation Guide

[R4] Unified Correlation Analyzer for Event Based Correlation User Interface Guide

[R5] Unified Correlation Analyzer – Clustering and HA Guide

[R6] UCA for EBC Inference Machine – JavaDoc
(C:\%UCA_EBC_DEV_HOME%\apidoc\inference-machine\index.html)

[R7] UCA for EBC – JavaDoc
(C:\%UCA_EBC_DEV_HOME%\apidoc\uca-ebc\index.html)

[R8] Unified Correlation Analyzer for Event Based Correlation Inference Machine
Installation Guide

[R9] Unified Correlation Analyzer for Event Based Correlation Topology Extension
Guide

[R10] HP Unified OSS Console Version 1.2.0 – User Guide

[R11] UCA for EBC Administration, Configuration and Troubleshooting Guide

Software Versions

The term UNIX is used as a generic reference to the operating system, unless
otherwise specified.

The software versions referred to in this document are as follows:

Product Version Supported Operating systems

UCA for Event Based Correlation
Server Version 3.2

 HP-UX 11.31 for Itanium
 Red Hat Enterprise Linux Server

release 5.9 & 6.5
UCA for Event Based Correlation
Channel Adapter Version 3.2

 HP-UX 11.31 for Itanium
 Red Hat Enterprise Linux Server

release 5.9 & 6.5
UCA for Event Based Correlation
Software Development Kit
Version 3.2

 Windows XP / Vista
 Windows Server 2007
 Windows 7
 Red Hat Enterprise Linux Server

release 5.9 & 6.5
UCA for Event Based Correlation
Inference Machine Software
Development Kit Version 3.2

 Windows XP / Vista
 Windows Server 2007
 Windows 7
 Red Hat Enterprise Linux Server

release 5.9 & 6.5

Table 1 - Software versions

Support

Please visit our HP Software Support Online Web site at
https://softwaresupport.hp.com/ for contact information, and details about HP
Software products, services, and support.

https://softwaresupport.hp.com/

11

The Software support area of the Software Web site includes the following:

 Downloadable documentation.

 Troubleshooting information.

 Patches and updates.

 Problem reporting.

 Training information.

 Support program information.

12

Chapter 1

Inference Machine: a quick tour

1.1 Context
Okay, UCA for EBC is an expert system, as it brings already an embedded Inference
Engine and the end-user can provide its own knowledge base of rules to execute.

So what is it that Inference Machine?

In fact, UCA EBC Inference Machine is nothing more than a framework based on top
of UCA for EBC to deliver high-value Value Packs with embedded knowledge base
where end-user does no more need to write rules.

An Inference Machine Value Pack is at a first glance very generic but is highly
configurable to fit most of end-user needs.

The SDK brought by Inference Machine is aimed at building an UCA for EBC Value
Pack for the Root Cause Analysis / Service Impact Analysis pattern for all kinds of
network elements.

1.2 Naming disambiguation
The name “Inference Machine” has different meanings in different contexts. It can
be a short name for

 Inference Machine Development Kit (aka IM SDK):
the Eclipse environment (including plug-ins) to develop an Inference
Machine Value Pack. The Inference Machine Development Kit is an addition
to the UCA EBC Development Kit.

 Inference Machine Value Pack (aka IM VP):
an UCA EBC Value Pack built using the Inference Machine Development Kit
and including its libraries.

The name “Problem Detection” has different meanings in different contexts. It can
be a short name for

 Problem Detection Framework (aka PD Framework):
the set of libraries, rules, configuration files, used to develop and run a
Problem Detection Value Pack. This framework is delivered as part of the
UCA EBC Inference Machine Development Kit and packaged into any
Problem Detection Value Pack.

 Problem Detection Value Pack (aka PD VP):
an Inference Machine Value Pack using only the Problem Detection
Framework.

13

The name “Topology State Propagator” has different meanings in different
contexts. It can be a short name for

 Topology State Propagator Framework (aka TSP Framework):
the set of libraries, rules, configuration files, used to develop and run a
Topology State Propagator Value Pack. This framework is delivered as
part of the UCA EBC Inference Machine Development Kit and packaged into
any Topology State Propagator Value Pack.

 Topology State Propagator Value Pack (aka TSP VP):
an Inference Machine Value Pack using only the Topology State
Propagator Framework.

1.3 Basic concepts

1.3.1 Inference Machine

Root Cause Analysis (RCA) is employed to determine the network element that
caused the failure as opposed to the network element(s) merely reacting to the
failure.

Service Impact Analysis (SIA) is used to determine the impact of such a failure,
either on the physical components themselves or on logical services, generally in
order to understand the impact on a service contract.

In most of cases, a correlation engine is needed to provide root cause or/and
service impact analysis.

Within UCA EBC family:

 RCA is covered by Problem Detection product (short named as PD).

 SIA is covered by Topology State Propagator product (short named as TSP).

 The conjunction of both RCA and SIA is called the Inference Machine (short
named as IM). An IM Value Pack follows the RCA-SIA pattern as shown in
Figure 1.

Figure 1 Inference Machine Value Pack (RCA-SIA pattern)

14

1.3.2 Problem Detection

The goal of Problem Detection (PD) is to analyze a large number of alarms and,
based on a set of conditions, to:

 realize Root Cause Analysis

 identify that a problem has occurred and create Problem Alarm in order to
summarize the problem

 group alarms which are correlated into sub Alarms of the Problem Alarm

The main concepts to familiarize with when using PD are Problem, Alarm Grouping
and Root Cause Analysis.

Both PD and TSP are capable of certain automated actions (e.g. Trouble Ticket
generation, Alarms clearance), as well as cross-domain correlation and alarms
enrichment.

Whereas in TSP, the topology is mandatory, in PD it is optional so it is not discussed
in this section. For details on the topology extension, the [R9] Unified Correlation
Analyzer for Event Based Correlation Topology Extension Guide can be consulted.

1.3.2.1 Problem

The primary role of a PD Value Pack is to identify that a failure (problem) has
occurred based on the appearance of a certain alarms set and on the presence of
certain conditions. Then, an operator readable Problem Alarm that summarizes the
problem will be generated.

1.3.2.2 Problem Alarm

Another base feature of Problem Detection Value Packs is to hide all the sub-
alarms in the NMS (Network Management System) display under the problem
alarm. This improves the operator’s experience: the most significant alarms stand
out in the foreground, and less important alarms are hidden in the background.
Note that it is assumed that the NMS has the capacity to group alarms.

When a type of failure (problem) occurs in the network on some resource at some
time Tpb (Tpb denotes time when the problem occurred), equipment in the
neighborhood of that resource, usually generate several alarms in a time window
around Tpb.

Problem Detection aims at:

 Detecting such a set of symptom alarms, and identifying the problem that those
alarms reveal,

 Generating a Problem Alarm that identifies and summarizes the problem, and is
readable by the operator,

 Grouping symptom alarms (sub-alarms) under the Problem Alarm.

Such a Problem Alarm generally aggregates:

Alarms related to network resources in the neighborhood of the network
resource(s) that is the source of the problem (same Managed Object, entity
hierarchy, or network location)

Alarms which occurred within a specific time window around Tpb

The Problem Alarm is the main alarm handled by operators. Additionally, the
Problem Alarm manages the life cycle of the sub-alarms grouped under it, with
regards to:

 State policy (acknowledgement, termination),

15

 Clearance policy

 Severity

A PD Group describes a problem and contains important information:

 The Problem Alarm

 The Sub Alarms of the Problem Alarms (Sub Service Alarms)

 Candidate Alarm, Trigger Alarm and Orphan Alarms

Since V3.2 the same applies for Event, therefore in a Group, we can have Candidate
Events and Trigger Events.

Trouble Ticket generation can be automated so that each Problem Alarm (including
its sub-alarms) is handled by just one Trouble Ticket (TT) on the Trouble Ticketing
system.

1.3.3 Topology State Propagator

The goal of Topology State Propagator (TSP) is to analyze Root cause alarms
(usually Problem Alarms grouped by Problem Detection) in order to:

 realize Service Impact Analysis with multi-layer network elements

 identify propagations and mark each of them through creation of a State
representing the propagation and, optionally, the creation of a “Service
Alarm” in a NMS, in order to identify the impacted propagation

 group alarms which are correlated into sub Alarms of the Service Alarms

The main concepts to familiarize with when using Topology State Propagator are
Propagation, Alarm Grouping and Service Impact Analysis.

As PD, TSP is also capable of certain automated actions (e.g. Trouble Ticket
generation, Alarms clearance), as well as cross-domain correlation and alarms
enrichment.

Whereas in PD, the topology is optional, it becomes mandatory in TSP. So the right
to use the UCA-EBC topology extension has to be checked before implementing a
TSP use-case.

In a standard way, one TSP scenario will be associated to a specific domain (which
can be physical or logical).

1.3.3.1 Propagation and State

Propagation in TSP is equivalent to the notion of Problem in PD. Propagation
defines an impact on a specific service. The impact is characterized by a State of
that service.

Propagation can be trigger by either:

 a Root Cause event (usually a Problem Alarm coming from PD)

 Another state generated by TSP (e.g. a state generated for a sub-service).

The propagation is responsible for creating the state and optionally storing it into a
DB, thanks to the UCA-EBC V3.1 DB persistence and DB forwarder features.

Multiple propagations can be defined through the filters file, each top Filter
representing one specific propagation.

16

1.3.3.2 Topology Point of Interest (or POI)

The Topology POI is an information utility feature brought by UCA-EBC V3.1. It is
used in the UCA GUI graph-display tool to check what's happening in the topology
tree in real-time. TSP can create POI on a specific node or on a specific relation and
is responsible for clearing it if necessary.

1.3.3.3 Service Alarm

Whereas in PD the presence of certain events and conditions was necessary for the
creation of a Problem Alarm summarizing the problem, in TSP the creation of a
Service Alarm summarizing the propagation is optional and is based on the
presence of certain root cause alarms or states.

The ServiceAlarm is an Alarm that can be created by TSP in a NMS, in order to
identify the impacted propagation. It follows the same concerns as the
ProblemAlarm used in PD.

As PD manages the Problem Alarm, in TSP, when the Service Alarm feature is
enabled, a similar treatment happens. TSP can hide all the sub-alarms in the NMS
(Network Management System) display under the Service alarm. This improves the
operator’s experience: the most significant alarms stand out in the foreground,
and less important alarms are hidden in the background.

A TSP Propagation Group describes a propagation and contains important
information:

 The State

 The impacting State List

 The Root Cause Alarms

 The whole Sub Tree of Root Cause Alarms (optional)

 The Service Alarm (optional)

The Sub Alarms of the Service Alarm (Sub Service Alarms) (optional)

1.4 Licensing
Inference Machine is an umbrella for two licensed products:
UCA EBC Problem Detection and UCA EBC Topology State Propagator.

17

Chapter 2

General Features

2.1 Root Cause and Service Impact Analysis
When a type of failure occurs in the network on some resource at some time Tpb
(Tpb denotes time when the problem occurred), equipment in the neighborhood of
that resource, usually generate several alarms in a time window around Tpb.

Hence, from those alarms emitted, there is a need to:

- Detect what is the problem behind that failure and summarize it to an operator.
This is performed by Problem Detection scenario.

- Eventually deduce from a well-known topology of that network what are the
services impacted from such a failure and summarize them to an operator.
This is performed by Topology State Propagator scenario.

Both scenarios described above run within UCA EBC Server as an Inference Machine
Value Pack.

Figure 2 – RCA-SIA Pattern

When the same Network Management System (NMS) is used to handle Problem
Alarms (generated by PD) and Service Alarms (generated by TSP), those alarms can
be grouped together by the Inference Machine Value Pack, so that the operator is
able to navigate from one to the other using for instance the HP Unified OSS
Console. Refer to [R10] HP Unified OSS Console Version 1.2.0 – User Guide for more
information.

18

2.2 Events grouping
A base feature of the Inference Machine Value Packs is that with both Problem
Detection and with Topology State Propagator event grouping is possible under a
summarized alarm which will represent the group Problem Alarm for PD and
Service Alarm for TSP, detailed in 1.3.2.2 and 1.3.3.3. As for TSP the Service Alarm
is optional, it is the State which represents the grouping internally in TSP.

 For PD the problem grouping will generate the creation of Groups. The same
principle is valid for TSP, where propagation grouping will generate the creation of
Propagation Groups.

To familiarize with these concepts, several schemas and diagrams are presented in
this document. The following notations are respected as presented in Figure 3.

Figure 3 Notation conventions

Depending on their position in the Group and Propagation Group:

 a State can be the State representing the PropagationGroup or on impacting
State of it

 an Alarm can be the ProblemAlarm of a Group, the ServiceAlarm of a
PropagationGroup, or a SubAlarm in the case of Group and Propagation
Group, and a RootCauseAlarm in the case of a PropagationGroup

 an Event can be a triggerEvent or a subEvent of Group.

These concepts are explained in the following figures.

19

Figure 4 Group (PropagationGroup) : position of Events

Figure 5 Group already created: example

Figure 6 PropagationGroup already created: example

Depending if the Group is created or not:

 an Alarm can be a CandidateAlarm of a Group

 An Event can be a CandidateEvent of a Group.

20

In Figure 7 is presented an example of a Group to be created and its events and
alarms which will contribute to the correlation in the group, set for the moment as
Candidate.

Figure 7 Group to be created: example

In comparison with the Group, in the PropagationGroup there is no notion of
CandidateEvent not CandidateAlarm. Therefore, the PropagationGroup to be
created is empty, as soon as the creation of a propagation group is set questioned
by the framework, its state is computed and the propagation group is created. So
the notation of the PropagationGroup to be created will be empty.

Figure 8 PropagationGroup to be created is empty.

In brief:

- PD scenario can hide all the sub-alarms in the NMS (Network Management
System) display under the problem alarm.
Since V3.2, PD is also able to group Events (not necessarily Alarms).
You can refer to annex D to get more details on this new functionality.

- TSP scenario can aggregate State and/or Root Cause Alarms that impact the
same service under a same group.
TSP is able to group Root Cause Alarms in the NMS (Network Management
System) display under a single Service alarm, if the NMS used is the same of
course.

Hence, this improves the operator’s experience: the most significant alarms stand
out in the foreground, and less important alarms are hidden in the background.

21

User can navigate from Root Cause view to Service view in its console of choice, for
example the HP Universal OSS Console [R10] HP Unified OSS Console Version 1.2.0 –
User Guide.

2.3 Lifecycle
Both PD and TSP frameworks packed in the IM come with default alarm and events
lifecycle, as well as with a default behavior.

In case the default behavior is needed to be enhanced, the Value Pack developer
can do so by writing his custom code in overridable methods or through
configuration when available.

Which overridable methods will be called depend on the lifecycle of the alarm,
state or other event and depending on the problem or propagation contexts.

Both PD and TSP frameworks will automatically invoke the methods
whatToDoWhenXXX(…), at precise times of the lifecycle of every alarm, state or
other event.

2.4 Automatic actions
Besides noticing and reporting the appearance of a failure (problem), besides
grouping events, Inference Machine scenarios can execute other automatic actions
with respect to the lifecycle of alarms (Alarm state propagation from Problem or
Service Alarm to sub-alarms and vice versa) and with respect to Trouble Tickets
(creation and propagation).

The automated actions, common to PD and TSP, are done using the Actions Factory
detailed in the following section.

2.5 Automatic Trouble Ticketing
Trouble Ticket generation can be automated so that each Correlation Alarm
(Problem or Service) can be handled by just one Trouble Ticket (TT) on the Trouble
Ticketing system.

This could be done independently

- on Problem Detection to associate a Problem Alarm and its Sub Alarms to a
single TT

- or on Topology State Propagator to associate a Service Alarm and its Root Cause
Alarms (coming from Problem Detection) or Sub Service Alarms to a single TT

- or on both scenarios.

2.6 Cross domain correlation
PD scenarios, as all UCA for EBC Value Packs, are able to process alarms coming
from various NMS (Network Management Systems) through the OSS Open
Mediation layer. The same applies to TSP scenarios, which by providing the SIA
function comes to complete in the IM the RCA-SIA pattern; therefore the standard
IM Valuepack will contain one PD scenario which will usually send its grouped
Problem Alarms to the TSP scenario.

22

Without developers having to write any Java code, both PD and TSP frameworks
are able to send actions to TeMIP, and are able to interact with the HP Service
Manager Trouble Ticketing system through TeMIP.

Since UCA-EBC has been designed as an independent platform it is equally capable
of receiving alarms and sending actions to other third party Network Management
Systems and Trouble Ticketing / Incident Management Systems. By implication this
applies to the PD and TSP frameworks too since they are layered on top of the UCA-
EBC framework, in the IM package.

PD and TSP in IM offer an open API available to support:

 Any Network Management System (in addition to TeMIP)

 Any Trouble Ticketing System (in addition to HP Service Manager)

The support of additional Network Management Systems and Trouble Ticketing
system will be done through OSS Open Mediation.

Following is an example of a PD use case where cross correlation can be useful:

 Consider a situation where all the alarms concerning a GSM network of a
telecom company in country 1 are managed with Network Management
System A and the alarms concerning a fixed network of the same telecom
company in country 2 are managed with Network Management System B

 If the call services from country 1 to country 2 are not working anymore, a
well configured Problem Detection Value Pack will be able to correlate
alarms from Network Management System A with alarms from Network
Management System B

2.7 Event enrichment
If some of the alarms received from the NMS (Network Management System) do
not contain enough information to be correlated, both PD and TSP frameworks
offer two pre-formatted ways to get additional data:

 A synchronous way to extract data from an XML file

 An asynchronous way to get data, through the execution of an action
(through standard actions that can be customized)

In addition:

It is also possible to write Java code doing any imaginable synchronous or
asynchronous request (database access, file access, HTTP request …).

2.8 Performance
Compared to a standard UCA for EBC Value Pack that would have been developed to
perform correlation, an Inference Machine Value Pack is very likely to perform
significantly better. The reason is that the Inference Machine Framework uses
optimization based on several hash maps, which allow processing of subsets of
relevant alarms rather than blindly feeding the rules engine with whole sets of
alarms.

The performance of Problem Detection Value Packs in terms of processing times
are close to being a linear function of the number of alarms, whereas in the case of
regular UCA for EBC Value Packs (performing the same type of correlation) the
processing times are likely to be a quadratic function of the number of alarms.

23

2.9 Robustness
One of the greatest advantages of the Inference Machine is its robustness.

All PD or TSP Value Packs use the fixed set of rules provided by the PD and TSP
frameworks, respectively.
This fixed set of rules has been extensively tested to ensure that it brings good
performance and a sound behavior (predictable results).

The developer of either an IM (PD + TSP) ValuePack, or of just a PD ValuePack or
TSP ValuePack will neither have to worry about the rules nor the performance of
the Value Pack.

However, an important size of memory for the JVM should be foreseen, depending
on the numbers of resident alarms in the Working Memory.

2.10 Ease of use
The steps to create a PD or TSP Value Pack are relatively simple and short.

If you’re satisfied with the default behavior of PD or TSP scenarios, the creation of
an IM Value Pack will not require any java coding or rule writing. It will only require
modifying a few XML configuration files.

2.11 Simulation
It is possible and even quite easy to check the correctness of an Inference Machine
Value Pack before actually building and deploying it.

Developing an Inference Machine Value Pack does not involve writing correlation
rules. In any case, it is highly recommended to unit test your code prior to kit
generation and deployment.

Another advantage of IM is that it is easy to write and run simple test files,
simulating the injection of alarms to validate that the problems are detected
correctly, and that the behavior of the Value Pack is as expected.

24

Chapter 3

Architecture

3.1 Inference Machine
Given that UCA-EBC brings a correlation engine based on incoming events, this
capability is most of the time not sufficient because end-users want to do their
events analysis using an out of the box element.

Inference Machine is the cornerstone for achieving this capability. It brings a RCA-
SIA pattern that should fit any customer needs. Users of Inference Machine do no
more need to write correlation rules, but they need to provide configuration files
and/or few customizations of Java classes.

Inference Machine is composed of 2 scenarios running in an UCA-EBC server

- 1st one is Problem Detection (PD) for doing Root Cause Analysis

- 2nd one is Topology State Propagator (TSP) for doing Service Impact Analysis

The flow of raw alarms are coming from any source (usually NMS) are treated by PD
to group them and to generate correlated Root Cause Alarms. Those RCAs are
eventually forwarded to TSP which in turns group them to find out what are the
impacts of the network topology and eventually generate Service Alarms.

25

3.2 Problem Detection
The diagram below shows a Problem Detection Value Pack deployed on a UCA for
EBC Server, with OSS Open Mediation connected to UCA EBC. Several Network
Management Systems are connected to OSS Open Mediation.

The PD Scenario receives its alarms through Alarm Collection flow coming from one
or several of the Network Management Systems connected to OSS Open Mediation.
It can also receive directly alarms that come from other scenarios through
Orchestra.

The Actions (to create Problem Alarms, to group sub-alarms under the Problem
Alarm, etc. …) use Action Service and are routed to OSS Open Mediation to be
processed by the proper Network Management System.

Contrary to other UCA for EBC Value Packs, a PD Scenario does not allow its
developer to modify the set of rules as they are embedded into PD Framework.
However, PD provides a set of Java methods that the developer can use to control
the life cycle of Events, the Problem Alarm creation and so on within the PD VP.
This is called Customization in Figure 9 – Problem Detection solution architecture.

The filters can, as per any other UCA-EBC VP, be tuned directly by end-user. Please
refer to UCA-EBC Reference Guide [R1].

Figure 9 – Problem Detection solution architecture

3.3 Topology State Propagator
The diagram below shows a Topology State Propagator (TSP) Value Pack deployed
on a UCA for EBC Server, with OSS Open Mediation connected to UCA EBC. Several
Network Management Systems are connected to OSS Open Mediation.

The TSP scenario receives its alarms directly from other scenarios (PD like) through
UCA EBC Orchestra. However, it can also receive alarms through UCA EBC Alarm
Collection flow coming from one or several of the Network Management Systems
connected to OSS Open Mediation.

26

In order to find out what are the impacted services, a topology describing the
network elements (links, nodes) should be defined using UCA EBC Topology
Extension.

The Actions (to create Service Alarms, to group sub-alarms under the Service
Alarm, etc. …) use UCA EBC Action Service and are routed to OSS Open Mediation to
be processed by the proper Network Management System.

Similarly to PD Scenario, a TSP Scenario does not allow its developer to modify the
set of rules as they are embedded into TSP Framework.

However,

- TSP Framework provides a set of Java methods that the developer can use to
control the life cycle of specific Events, i.e. Alarms and States, the Service
Alarm creation and so on. This is called Customization in Figure 10 – Topology
State Propagator solution architecture.

The filters for defining the Propagations can be tuned directly by end-user. Please
refer to UCA-EBC Reference Guide [R1].

Figure 10 – Topology State Propagator solution architecture

3.4 A common library
As PD and TSP have several common needs, it has been decided to provide a
common library, which is delivering its own namespace.

The common library of the IM (uca-evp-im-common.jar) contains the Actions
Factories, a common lifecycle class for State events, as well as several interfaces,
described in the following sections.

3.4.1 Actions Factory

Both TSP and PD have the needs to execute actions on NMS (e.g. create alarm, clear
alarm, group alarms, etc…). Therefore, the Actions Factory is provided as part of

27

the uca-evp-im-common.jar common library. The same applied for the access to
the database (DbActionsFactory.class provided).

The Inference Machine developer can configure and use a single Actions Factory for
both PD and TSP scenarios in the same Value Pack.

As the new Actions Factory has a different namespace, the compatibility is broken
in PD V3.2. PD 3.2 does not provide any automatic migration tool for the Java files.
However, SDK provides an XLST (eXtensible Stylesheet Language Transformation)
file that can be used to migrate PD configuration file. Refer to Annex A How do I
migrate my PD VP 3.0/3.1 to 3.2? for more information.

In counterpart to PD incompatibility, several improvements are present:

 the logic of Actions is separated from PD and TSP

 reusable (same ActionsFactory or DbActionsFactory can be used across PD
and TSP)

 easier to understand

3.4.2 Lifecycle class for State and other Events

The class
com.hp.uca.expert.vp.common.lifecycle.MixEventsAndStateLifeCycleExtended.class
has been added in the uca-evp-im-common.jar common library. This class is an
enriched Alarm Lifecycle class, managing both States and others Events (Alarms
and other events) lifecycle. Alarms passing just the top filter
“ReservedForGeneralBehavior” will not be inserted in the Working Memory.

For the Topology State Propagator scenario, as well as for the PD scenario, in the
IM Value Pack, there are two new classes extending this common class:

 The com.hp.uca.expert.vp.pd.im.lifecycle.InferenceMachineLifeCycleExtended
is used as the Problem Detection scenario extended life cycle in an
Inference Machine valuepack. This class handles alarms, events and states
lifecycle and it will bypass service alarms received from the network.

 The com.hp.uca.expert.vp.tp.im.lifecycle.InferenceMachineLifeCycleExtended
is used as the Topology State Propagator scenario extended life cycle in an
Inference Machine valuepack. This class handles alarms, events and states
lifecycle.

An IM VP example is described in Annex F.

3.4.3 Interfaces

Several interfaces are contained in the common library needed for:

 Actions and Trouble Ticketing

 Common configurations of a Problem or a Propagation (Booleans, Longs, Strings)

 Problem and Service Alarm creation and History Navigation

 Topology tags definition in filters of Neo4J Cypher Queries

 General Behavior of a Problem or a Propagation for common methods to all
propagations or problems

Full documentation of methods is available in IM Javadoc part of the SDK [R6].
Most of above interfaces have a default implementation which is used implicitly
used by ProblemDefault or PropagationDefault Java classes.

28

Chapter 4

The IM scenarios explained

Inference Machine Framework brings two scenarios:

- Problem Detection (PD)

- Topology State Propagator (TSP)

4.1 Problem Detection

4.1.1 Its role in brief

In short, Problem Detection is doing Root Cause Analysis.

Problem Detection aims at:
 Detecting from a numerous number of raw alarm a set of symptom alarms,

and identifying the problem that those alarms reveal,
 Generating a Problem Alarm that identifies and summarizes the problem, and

is readable by the operator,
 Grouping symptom alarms (sub-alarms) under the Problem Alarm.

Such a Problem Alarm generally aggregates:

- Alarms related to network resources in the neighborhood of the network
resource(s) that is the source of the problem (same Managed Object, entity
hierarchy, or network location)

- Alarms which occurred within a specific time window around Tpb

The Problem Alarm is the main alarm handled by operators. Additionally, the
Problem Alarm manages the life cycle of the sub-alarms grouped under it, with
regards to:
 State policy (acknowledgement, termination),
 Clearance policy
 Severity

The Network Management System (NMS), which initially displays a constellation of
alarms, is instructed by the Problem Detection Value Pack to display only a relevant
Problem Alarm, and to group and hide all correlated sub-alarms beneath it. Note
that it is assumed that the NMS has the capacity to group alarms.

4.1.2 Its main feature

The primary role of a Problem Detection (PD) scenario is Problem Identification.

29

This is to identify that a failure (problem) has occurred based on the appearance of
a certain set of alarm, and on the presence of certain conditions;

And then to generate an operator readable Problem Alarm that summarizes the
problem.

4.1.3 Alarm state propagation

Problem Detection offers the following default behaviors

When a Problem alarm’s state
has been changed to

Change sub-alarms’ state to

ACKNOWLEDGED ACKNOWLEDGED

NOT_ACKNOWLEDGED NOT_ACKNOWLEDGED

CLEARED sub-alarms’ state left unchanged

CLOSED sub-alarms’ state left unchanged

TERMINATED TERMINATED (If sub-alarm was cleared)

NOT_ACKNOWLEDGED (If sub-alarm was not
cleared)

+ “sub-alarms” promoted back to “alarms”

When Problem alarm is Change sub-alarms’ state to

No longer eligible TERMINATED (If sub-alarm was cleared)

NOT_ACKNOWLEDGED (If sub-alarm was not
cleared)

Table 2 - Alarm state propagation from Problem Alarm to sub-alarms

The eligibility of an alarm to be inserted in Working Memory or to remain in Working
Memory is determined by the alarm eligibility policy.

The Alarm eligibility policy is an expression that evaluates to a Boolean. Below is an
example of an Alarm eligibility policy:

NetworkState=="NOT_CLEARED" &&

OperatorState!="TERMINATED" &&

ProblemState!="CLOSED"

For more details please refer to the chapter alarmEligibilityPolicy in the UCA for
EBC Reference Guide

When the state of all
sub-alarms has been
changed to

Change the state of the Problem Alarm to

CLEARED CLEARED

No longer eligible CLEARED

Table 3 - Alarm state propagation from sub-alarms to Problem Alarm

30

4.2 Topology State Propagator

4.2.1 Its role in brief

In short, Topology State Propagator is doing Service Impact Analysis.

In Topology State Propagator world:

- We call Propagation an impact on an element defined in the network topology,
which element is part of multiple assets that usually defines a service.
Similarly, Propagation is equivalent to Problem in Problem Detection.

- We call State the status of that impact in the topology. For example, a service is
degraded but can have different levels of degradation (low, medium, high…)

Topology State Propagator aims at:
 Detecting from one or more root cause alarm a set of propagations, and

identifying the impacts that those propagations reveal,
 Generating a State to identify the status of a particular propagation, given that

a new propagation can also have impacts on new propagations.
 Generating optionally a Service Alarm that identifies and summarizes the

concerned propagation, and is readable by the operator,
 Grouping root cause alarms and/or other service alarms (as sub-alarms) under

the Service Alarm.

Such a Service Alarm generally aggregates:

- Problem Alarms that have been previously correlated from alarms coming from
network equipment (coming from Problem Detection)

- States that have an impact on a specific Propagation.

The Service Alarm can be the main alarm handled by operators. Additionally, the
Service Alarm can also manage the life cycle of the Root Cause Alarms associated
to it (and if handled within the same Network Management System), with regards
to:
 State policy (acknowledgement, termination),
 Clearance policy

When a hierarchy of Propagations is defined, The Network Management System
(NMS) is instructed by the Topology State Propagator Value Pack to display only
the top Service Alarm, and to group and hide all sub Service Alarms beneath it. Note
that it is assumed that the NMS has the capacity to group alarms.

4.2.2 Its main feature

The primary role of a Topology State Propagator (TSP) scenario is Propagation
Impact.

This is to identify what are the impacted services (propagation) based on the
appearance of certain root cause alarms (previously correlated as Problem Alarms
by PD) and based on the description of the network impacted (though Topology
API).

And then to generate a State defining the status of that impacted service at a given
time, and optionally to:

31

- Create a Point of Interest (POI) in the Topology in Memory Attribute Manager
that is visible through the Graph display application available in UCA-EBC UI or
in HP Unified OSS Console [R10] HP Unified OSS Console Version 1.2.0 – User
Guide.

- Generate a copy of that State into a DB for monitoring the historical changes for
a specific service

- Create in another DB or in the NMS (Network Management System) the Service
Alarm that summarizes the propagation.

4.2.3 Alarm state propagation

Topology State Propagator offers the exact same services in terms of Alarm state
propagation for Service Alarm that Problem Detection provides for Problem
Alarms.

32

Chapter 5

Configuration

This chapter covers the configuration of Inference Machine.

5.1 Value Pack
An UCA-EBC VP comes always with 2 configuration files.

An IM VP should provide those files already configured for running correctly.

The file “ValuePackConfiguration.xml” defining the configuration used by any UCA-
EBC Value Pack that is provided by an IM VP has several sections:

<scenarios> This section should not be modified unless upon an HP
Support request, or in some rare conditions, where for example
some periods need to be modified for performance reasons.

<mediationFlows>
<dbFlows>

Those sections may be modified to support different NMS or
DBs that should be considered as sources for the IM VP.

The file “context.xml” defining the spring beans to instantiate within the IM VP is
closely related to the IM VP code itself. Particularly, it contains the beans:

“problemsFactory” Present if the PD scenario is defined in
“ValuePackConfiguration.xml” file. It should not be
modified

“propagationsFactory” Present if the TSP scenario is defined in
“ValuePackConfiguration.xml” file. It should not be
modified

It may also contain the various beans to define the DB connections and the State
forwarders to use for storing States and/or Service Alarms into a DB, which one
may be modified to satisfy your DB connection needs.

For full details of above files, please refer to UCA-EBC Reference Guide [R1].

5.2 Inference Machine
Actions to NMS and Trouble Ticket Actions are defined specifically in PD and TSP
but the way to configure them is common to PD and TSP within the IM Framework.

Therefore, this section describes the common configuration parts that can be used
by any scenario within IM framework.

It applies to both ProblemXmlConfig.xml and PropagationXmlConfig.xml files.

33

5.2.1 Actions to NMS

The IM Framework comes by default with the support of two Actions Factories,
both of which come with default Alarm directives for handling alarms:

- in TeMIP, in that case <actionClass> should be set to
com.hp.uca.expert.vp.common.actions.temip.TeMIPActionsFactory

- in a DB, and in that case <actionClass> should be set to
com.hp.uca.expert.vp.common.actions.db.DBActionsFactory

The <actions> element contains the following properties:

name type value

defaultActionScriptReference property Unique reference that will be used in the
rule to define the routing information of
a script-based Action.

action property Container for attributes defining the
actions for a set of alarms

Table 4 - IM actions configuration

The <action> element contains the following properties:

name type value

name attribute Usually the “sourceIdentifier” field of
incoming alarms is matched to this name
to know which actionsFactory to use for
a given alarm

actionReference property Unique reference that will be used to get
the routing information of an action. This
actionReference has to be defined in the
Action Registry. The Action Registry is a
configuration file used to define routing
information for all actions processed by
the rules.

actionClass property
The class implementing the
SupportedAction interface which
describes the methods needed to
support any Action on alarms.
Methods such as createAlarm,
terminateAlarm, clearAlarm, …

attributeUsedForKeyDuringReco
gnition

property
The Custom Field Name of the Alarm that
will contain the information to identify
that an Alarm is generated by the IM
Framework. In other words this attribute
defines the name of the field (in UCA-EBC
format) of the Problem Alarm (or Service
Alarm), that PD (or TSP) has to look at
 (when the alarms come back from the
NMS) to find the useful info to attach this
alarm to the right group

34

name type value

attributeUsedForKeyPbAlarmCre
ation

property
The custom Field of the Alarm that will
contain information about the problem.
This attribute defines the name of the
field in the NMS format) of the Problem
Alarm (or Service Alarm), in which PD (or
TSP) puts the useful info (at the time of
creation of that alarm) that it will read
when that alarm comes back from the
NMS. The useful info it contains are
things like: name of the trigger alarm,
name of the problem/propagation, name
of the problem/propagation entity.

booleans Property
(optional)

For defining multiple booleans for a
specific use-case.

strings Property
(optional)

For defining multiple strings for a
specific use-case.

longs Property
(optional)

For defining multiple longs for a specific
use-case.

Table 5 - IM action configuration

The optional booleans/strings/longs elements used by TeMIPActionsFactory
contain the following properties:

name type Value

maxChildrenLength long
property

Maximum size in Bytes of the alarm field
“children”
Default size is 15000 (15 Kb)

Once the maximum size of the “children”
field is reached, Problem Detection stops
requesting the NMS to add potential new
children to the parent alarm

useOnlyGroupingKeys boolean
property

If set to true (default false), the
GROUPALARM directive is not used. This
implies that “parent” and “children” field
of alarms won’t be filled. Only the field
“grouping Keys” will be filled ; and the
navigation in the TeMIP client will only be
possible through the “Alarms grouping”
submenu

copyReferenceAlarmOnPbAlarmC
reation

boolean
property

If set to true (default), the
Reference_Alarm directive is always
used at problem alarm creation.

If set to false, the Reference_Alarm
directive might not be used at problem
alarm creation, depending on the value
of copyReferenceAlarmWhenNotPbAlarm
(see below).

35

name type Value

copyReferenceAlarmWhenNotPb
Alarm

boolean
property

Useless if
copyReferenceAlarmOnPbAlarmCreation
is set to true (see above)

If set to true (default), the
Reference_Alarm directive is used at
problem alarm creation only when the
trigger of the new problem alarm is not a
problem alarm created before by PBD.

If set to false, the Reference_Alarm
directive is never used.

ocName string
property

Defines the value of the OC used.

navigationKey string
property

The navigationKey used during
setHistoryNavigation() call.

By default, it is set to “Pb”.

Table 6 – Specific optional IM action configuration for TeMIP

The optional booleans/strings/longs elements used by DBActionsFactory contain
the following properties:

name type Value

useOnlyGroupingKeys boolean
property

If set to true (default false), the parent
and children fields of an alarm are not
updated. Only the field “groupingKey”
will be filled.

navigationKey string
property

The navigationKey used during
setHistoryNavigation() call.

By default, it is set to “Pb”.

groupingKey string
property

The name of the groupingKey attribute
stored with the alarm.

By default, it is set to “groupingKey”.

jdbcAlarmForwarder string
property

The name of the JDBC alarm forwarder
bean to use for writing alarms.

sourceIdentifier string
property

The value with which to fill the
sourceIdentifier field in createAlarm()

By default, it is set to "UCA-EBC".

dbFlow string
property

The value with which to fill the dbFlow
identifier in the targetValuePack field in
createAlarm()

By default, it is null so that first dbFlow
declared in value pack configuration will
be used.

36

name type Value

childPrefix string
property

The prefix to use for each element of the
children field in the
associateAlarmsForHistoryNavigation()
call.

By default, it is set to “C:DB:".

parentPrefix string
property

The prefix to use for each element of the
parents field in the
associateAlarmsForHistoryNavigation()
call.

By default, it is set to "MASTER:C:DB:".

Table 7 – Specific optional IM action configuration for DB

5.2.2 Trouble Ticket Actions

The IM Framework supports the HP Service Manager through TeMIP.

To benefit from it, the <actionClass> should be set to
com.hp.uca.expert.vp.common.actions.temip.TeMIPTroubleTicketActionsFactory

The <troubleTicketActions> element contains the following property:

name type value

troubleTicketAction property Container for attributes defining the
trouble ticket actions for a set of alarms

Table 8 – IM troubleTicketActions configuration

The <troubleTicketAction> element contains the following properties:

name type value

name attribute Alarms corresponding (in the filters file) to a tag
matching this name will use the trouble ticket
system defined in the actionReference below

actionReference property Unique reference that will be to define the
routing information of a trouble ticket action

actionClass property The class implementing the
SupportedTroubleTicketActions interface which
describes the methods needed to support any
Action on alarms.
Methods such as createTroubleTicket,
closeTroubleTicket...

booleans property
(optional)

For defining multiple booleans for a specific
use-case.

strings property
(optional)

For defining multiple strings for a specific use-
case.
Container for a set of key / value <string>
specifying parameters for the interaction with
the trouble ticketing system

37

longs property
(optional)

For defining multiple longs for a specific use-
case.

Table 9 – IM troubleTicketAction configuration

To know which Trouble Ticket System to use for an alarm the value of the tag is
matched to the name attribute of the <troubleTicketAction> element.

Example:

tag="TeMIP TT"

<troubleTicketAction name= "TeMIP TT" >

The optional strings elements used by TeMIPTroubleActionsFactory:

name type Value

TT_SERVER entity string
property

By default, it is set to "TT_SERVER .SM".

Type string
property

By default, it is set to “Synchronous".

User string
property

By default, it is set to “temip".

CloseTemplateFile string
property

By default, it is set to

“closeTroubleTicketByValueRequest.xml".

CreateTemplateFile string
property

By default, it is set to

“createTroubleTicketByValueRequest.xml".

AssociateTemplateFile string
property

By default, it is set to

“associateTroubleTicketByValueRequest.xml".

DissociateTemplateFile string
property

By default, it is set to

“dissociateTroubleTicketByValueRequest.xml".

Input string
property

By default, it is set to “input".

Table 10 – Specific optional IM troubleTicketAction configuration for TeMIP

5.3 Problem Detection

5.3.1 Filters, tags and mappers

A PD Scenario comes usually with 3 standard UCA-EBC configuration files:
- “ProblemDetection_filters.xml” to define the problems and their tags
- “ProblemDetection_filtersTags.xml” to define the tags associated to the filters
- “ProblemDetection_mappers.xml” to define the different mappers and the neo4j
Cypher queries to use within PD VP, mainly specified by tags.

The <topFilter> elements defined in the “ProblemDetection_filters.xml” file are
closely related to the PD VP code itself, since it defines the Java classes
corresponding to a specific problem. Hence, it should not be modified except in
some rare conditions, where for example some problem priority needs to be re-
assessed, or to use a new mapper for computing the unique source id of an
incoming event, or to update the role of a specific filtered alarm.

38

The “ProblemDetection_filtersTags.xml” is only used for GUI purpose in the filter
builder panel to associate right tags to right filters.

The PD framework recognizes few predefined tags, as followed:

 When concerning Event objects

When The role of the
event is

And the definition of this role is

tag=“TriggerEvent” Trigger event Event which is important symptom of a
problem and which triggers the creation of
a group

tag=“SubEvent” Sub event Event which is a symptom of a problem
and is grouped under a Problem alarm

Table 11 – Tags for possible roles of an event within PD

 When concerning Alarm objects

When The role of the
alarm is

And the definition of this role is

tag=“Trigger” Trigger alarm Alarm which is an important symptom of a
problem, and which triggers the creation
of a problem alarm

tag=“SubAlarm” Sub-alarm Alarm which is a symptom of a problem
and is grouped under a Problem alarm

tag=“ProblemAlarm” Problem alarm Alarm that summarizes the problem, and
is readable by the operator

Table 12 – Tags for possible roles of an alarm within PD

You can also associate above tags, for example:

- tag="SubAlarm,ProblemAlarm" defines an alarm which is Problem alarm of a
problem, and sub-alarm of another problem

- tag="Trigger,ProblemAlarm" the trigger alarm should be considered as
Problem alarm (no new alarm created)

The <cypherQuery> elements defined in the “ProblemDetection_mappers.xml” file
are closely related to the topology loaded in Neo4j, hence it should not be
modified except in some rare conditions. However, the <mapper> elements may
be changed to handle new conditions on incoming events, but in such a case, the
“ProblemDetection_filtersTags.xml” should be updated accordingly.

5.3.2 Specific configuration

A PD Scenario comes with a specific “ProblemXmlConfig.xml” file.

5.3.2.1 The Main Policy

The <mainPolicy> element is a configuration setting which is common to all
problems defined in a PD Scenario, hence not linked to any problem.

It has few attributes:

name type value

enablePrioritySort boolean
attribute

Specifies to turn on the group sorting feature.
Default value is “false”

39

multipleParentSupport boolean
attribute

Specifies to set the parent relationship for each
group of that Problem Alarm (true) or only with
the one of highest priority (false).
Default value is “true”

enableTopoAccess boolean
attribute

Specifies to access topology information when
computing information for Problem Alarm
(hence triggering computeSourceUniqueID() and
computeDBRecords()) during the workflow
(true) or not (false)
Default value is “false”

Table 13 – PD mainPolicy attributes

And few elements described below:

<candidateVisibility>

Before a problem is detected, an alarm belonging to a set of potential alarms
characterizing a problem can be considered as a “candidate alarm” for this
problem. Once the problem is detected (i.e. when the problem alarm is received),
the “candidate alarm” becomes a sub-alarm of the problem. A trigger alarm can
also be considered a “candidate alarm” for the problem, until the problem is
detected.

The candidateVisibilityTimeValue parameter indicates how long an alarm

should be shown as a “candidate alarm” in the Network Management System
viewer. This parameter is read-only if candidateVisibilityTimeMode is set to
“Value”. The value is expressed in milliseconds.

The candidateVisibilityTimeMode parameter is subtle.

It can take three values: “Max” (default value), “Min”, or “Value”

“Max” means that the alarm will remain a candidate alarm as long as there is a

chance that this alarm may be associated with a problem instance. In the diagram
below, the alarm (upper left arrow) can belong to three types of problems. So it will
remain as a candidate alarm for as long as there is a possibility that this alarm
become part of one of the problems (problem A or problem B or problem C). To be
part of a problem instance, an alarm must be included in a time window (see Figure
11) around the time of appearance of a trigger alarm for that problem. In diagram
below if none of the trigger alarms for problem A, B and C came, it is useless for the
alarm to remain candidate longer than the max value of
timeWindowBeforeTrigger of problems A, B and C. If a trigger alarm comes

after, then the alarm will necessarily be out of its time window.

40

Figure 11 - Explanation of the candidateVisibilityTimeMode=Max

candidateVisibilityTimeMode=Value means that the alarm will remain as a

candidate alarm no longer than the value specified by
candidateVisibilityTimeValue (expressed in milliseconds)

candidateVisibilityTimeMode=Min means that as soon as there is at least

one potential problem instance an alarm cannot be part of, this alarm will not be
marked as a candidate alarm any longer.

The markCandidate parameter indicates whether an alarm should be marked as a

“candidate alarm” in the Network Management System viewer (provided the NMS
viewer has this capacity).

<transientFiltering>

The concept of transient filtering derives from the observation that sometimes,
some alarms disappear by themselves after some time; so in such situation it can
be useful for a PD Value Pack to wait a little and see which alarms still exist.

When enabled with transientFilteringEnabled=true, the Transient Filtering

feature makes the Problem Detection Value Pack, upon reception of any alarm,
wait during a period (transientFilteringDelay) before actually processing the

alarm. Maybe the alarm will have disappeared.

transientFilteringEnabled=true|false

transientFilteringDelay=<waiting period in milliseconds>

<actions>

The PD Framework is able to configure multiple actions factories in order to
support multiple NMS. Refer to section 5.2.1 to get the details.

< troubleTicketActions>

The PD Framework is able to configure trouble ticket actions factories. Refer to
section 5.2.2 to get the details.

Note that this element is however optional.

41

< counterTotalNumberAlarms>

It specifies what to count for the Problem Alarm field representing Total Number of
Alarms: either the current number of alarms in the group or the total number of
alarms since the group creation.

5.3.2.2 The Problem Specific Policies

Problem Policies are configuration settings which are specific to each problem
defined in a PD Value Pack.

These problem specific configuration settings are defined inside the
<problemPolicy name="…"> XML tag.

The <problemPolicy> element has few attributes:

name type value

enableComputeProblemEn
tityFromMappers

boolean
attribute

Specifies to disable (when false) the use of calling
mappers in computeProblemEntity().
Default value is “true”

enableComputeProblemEn
tityFromFields

boolean
attribute

Specifies to enable (when true) calculation of
fields key/value pairs in computeProblemEntity().
Default value is “false”

Table 14 –problemPolicy attributes

It has also elements described below:

<problemAlarm>

The <problemAlarm> element specifies behavior around ProblemAlarm.

name type value

delayForProblemAlarm
Creation

long
(optional)

Delay, expressed in milliseconds, before the
creation of the associated problem alarm.
Example: Setting the value: 2000 to this property
applies a delay of 2000 ms (2 seconds) before
creating Problem Alarms.
Default value is 2000.

delayForProblemAlarm
Clearance

long
(optional)

Delay, expressed in milliseconds, before clearing
the problem alarm.
Example: Setting the value: 0 (ms) to this
property does not delay the clearance of
Problem Alarms after all conditions are met for
clearing problem Alarms.

Default value is 10000.

problemAlarmCanTrigg
erAnotherGroupForSa
meProblem

boolean
(optional)

It now possible to support the concept of nested
problems, i.e. one alarm may have multiple roles
for the same problem. It can be a ProblemAlarm
for one group, but also
Trigger or be attached to another group of the
same problem.

False (by default) A ProblemAlarm cannot
create a new group for the same problem.
True Enable the fact that a ProblemAlarm of a
group can also create new group for the same
problem.

42

Table 15 – PD problemAlarm per-problem configuration

<troubleTicket>

It is possible for PD Value Packs to automatically create a trouble ticket associated
to a Problem Alarm.

The following configuration parameters are available that control the creation of
trouble tickets for Problem Alarms:

name type value

automaticTroubleTicke
tCreation

boolean When false, does not automate the creation of a
trouble ticket once a Problem Alarm is created
When true, automates the creation of a trouble
ticket once a Problem Alarm is created

propagateTroubleTicke
tToSubAlarms

boolean When true all sub-alarms (of the problem alarm),
are associated to the trouble ticket linked with
the Problem Alarm
When false, sub alarms are not associated to the
trouble ticket linked with the Problem Alarm

propagateTroubleTicke
tToProblemAlarm

boolean When false, if one sub-alarm has a trouble ticket,
the Problem Alarm will not be linked to this
trouble ticket
When true, if one sub-alarm has a trouble ticket,
the Problem Alarm will be linked to this trouble
ticket

delayForTroubleTicket
Creation

long
(optional)

Delay, expressed in milliseconds (after the
creation of a Problem Alarm) before the
associated trouble ticket is created
Default is 10000.

Table 16 – PD troubleTicket “per-problem” configuration

<groupTickFlagAware>

This element of type boolean, when set to true, indicates that at regular tick
intervals, the PD Value Pack, if customized for that, will execute some user code.

Hence it should not be changed unless required by VP developer.

<sameGroupForAllProblemEntities>

This property of type Boolean is optional. It only has a meaning if a trigger alarm
has multiple problem entities. If a trigger alarm has several problem entities
associated, and that this property is set to false, then several group will be created
for the same trigger alarm; if the property is set to true, then there will be only one
group created for the trigger alarm, and this group will cover all the problem
entities of the trigger alarm.

<problemAlarmAbleToCreateGroup>

This property of type Boolean is optional.

By default in Problem Detection, a problem alarm is allowed to create a group, if
the trigger that created this problem alarm is not present.

43

That generally does not cause any problem, because the lifecycle of this group will
be handled.

However for some customers, the lifecycle of Problem Alarms is not handled
directly (only lifecycle of non-‘problem alarms’ is handled), as a consequence, the
lifecycle of the group will also not be handled.

For such use case, there is a property to prevent problem alarms from creating
groups.

If set to ‘true’, it does not change the recommended default behavior of Problem
Detection. If set to ‘false’ problem alarms corresponding to triggers that are not
present anymore in the working memory, or present as mere sub alarms, will be
discarded.

<enableTriggerConsistencyAfterResync>

This property of type Boolean is optional.

By default in Problem Detection, a created group can change its trigger alarm after
a resynchronization. This is useful because alarms that are getting resynchronized
are received in the reverse order compared to the original order. So that in such
case, the problem alarm of a group is received before the original trigger that was
used to create that group.

So in order to keep consistency among groups, if Problem Detection detects such a
case, in which an original trigger alarm is received once the group is already
created, because of the prior reception of the problem alarm of that same group,
then the original trigger takes back its original role of trigger alarm for that
particular, instead of the problem alarm that was in that case assumed as the
trigger alarm.

To disable this feature, this property should be set to ‘false’.

This could be useful to disable this feature if, for example, your customization of
PD framework already recomputed the trigger alarm.

<computeProblemEntityFromFields>

This element is optional.

It has an attribute “keyValueSeparator” that defines the separator string, which is
by default “=”.

It holds a sequence of <field> elements that are defined as below:

name Property
Value

key Property
Defines the field key (can be custom field
or not) of an alarm used as a key/value
pair for computeProblemEntity().

valueIgnored Property
(optional)

Defines an optional value to be ignored
for a field during
computeProblemEntity().

Note that the property key is in its turn a tuple:

name type
Value

tagName string
Defines the tag defining the field name
to be used as key/value pair for
computeProblemEntity().

44

fieldName string
Defines directly the field name to be
used as key/value pair for
computeProblemEntity().

Table 17 – PD computeProblemEntityFromFields “per-problem” configuration

<timeWindow>

This element holds following properties:

name type Value

timeWindowMode
string A TimeWindow is used to decide if an Alarm has

to be part of a Group of Alarm depending on its
alarmRaisedTime field.

When None (by default), no time window, this is
the equivalent of an infinite time window. All
alarms regardless of their timestamp can be
associated with a problem.
When Trigger, a time window around the (first)
trigger alarm of a problem is in place. Only
alarms with timestamps inside this time window
can be associated with a problem.

timeWindowBeforeTri
gger

long
(optional)

Delay, in milliseconds, before the Trigger's
alarmRaisedTime field to consider an Alarm as
part of the Trigger's problem.
Default is 30000.

timeWindowAfterTrig
ger

long
(optional)

Delay, in milliseconds, after the Trigger's
alarmRaisedTime field to consider an Alarm as
part of the Trigger's problem.
Default is 30000.

Table 18 – PD timeWindow “per-problem” configuration

Also, depending on customer Value Pack:

name Property
Value

booleans Property
(optional)

For defining multiple booleans for a
specific use-case.

strings Property
(optional)

For defining multiple strings for a
specific use-case.

longs Property
(optional)

For defining multiple longs for a specific
use-case.

Table 19 – PD customized “per-problem” configuration

45

5.4 Topology State Propagator

5.4.1 Filters, tags and mappers

A TSP Scenario comes usually with 3 standard UCA-EBC configuration files:
- “TopologyPropagation_filters.xml” to define the propagation and their tags
- “TopologyPropagation_filtersTags.xml” to define the tags associated to the
filters
- “TopologyPropagation_mappers.xml” to define the different mappers and the
neo4j Cypher queries to use within PD VP, mainly specified by tags.

The <topFilter> elements defined in the “TopologyPropagation_filters.xml” file are
closely related to the TSP VP code itself, since it defines the Java classes
corresponding to a specific propagation. Hence, it should not be modified except in
some rare conditions, where for example some propagation priority needs to be re-
assessed, or to use a new mapper for computing the unique source id of an
incoming event, or to update the role of a specific filtered alarm.

The “TopologyPropagation_filtersTags.xml” is only used for GUI purpose in the
filter builder panel to associate right tags to right filters.

The TSP framework recognizes 3 predefined tags, as followed:

When The role of the
alarm is

And the definition of this role is

tag=“RootCauseAlarm” Root Cause alarm A Root Cause Alarm which represents a
problem, and which and is attached to a
specific propagation. In IM Value Pack,
such a Root Cause Alarm is a Problem
Alarm coming from PD.

tag=“SubAlarm” Sub-Service alarm Alarm representing a propagation but
which is associated under a higher Service
alarm

tag=“ServiceAlarm” Service alarm Alarm that summarizes the propagation,
and is readable by the operator

Table 20 – Tags for possible roles of an alarm within TSP

Unlike PD, you cannot associate above tags.

The <cypherQuery> elements defined in the “TopologyPropagation_mappers.xml”
file are closely related to the topology loaded in Neo4j, it should not be modified
except in some rare conditions. However, the <mapper> elements may be changed
to handle new conditions on incoming events, but in such a case, the
“TopologyPropagation_filtersTags.xml” should be updated accordingly.

5.4.1.1 The special topFilter named ReservedForGeneralBehavior

When an event comes in TSP framework, there is a need to compute its unique
source identifier. This is done by calling the computeSourceUniqueId() method of
the GeneralBehavior class defined for all propagations.

TSP framework brings a default class which by default does the following:

- Looks into the passing ReservedForGeneralBehavior filter for the tag named
“ComputeSourceUniqueIdMapper” that will give a name of a mapper to execute

- Executes that mapper which should be present in
“TopologyPropagation_mappers.xml” and returns the computed string

46

5.4.1.2 The special tag named CypherQuery

When an event comes in TSP framework, once a unique source identifier has been
computed, there is a need to retrieve the topology records associated to the object
represented by that event, i.e. all the nodes impacted by that object.

This is done by calling the computeDbRecords() method of the concerned
Propagation class.

The default Propagation class brought by IM framework does the following:

- Looks into the passing filter for that propagation for the tag named
“CypherQuery” that will give the name of the Neo4j query to execute

- Executes that query which should be present in
“TopologyPropagation_mappers.xml” and returns the executed query which
contains the resulted records

Note that for GUI filter builder purpose, usually, all the <cypherQuery> elements
that are defined in “TopologyPropagation_mappers.xml” should also be referenced
in “TopologyPropagation_filterTags.xml” under a <paramTag> named
“CypherQuery” and proposing an enum of all those queries.

5.4.2 Specific configuration

A TSP Scenario comes with a specific “PropagationXmlConfig.xml” file.

5.4.2.1 The Main Policy

The <mainPolicy> element is a configuration setting which is common to all
propagations defined in a TSP Scenario, hence not linked to any propagation.

It has one attribute:

name type value

stateSourceIdentifier String
attribute

It is used to fill up the “sourceIdentifier” field of
a State event generated by the TSP framework.

Table 21 – TSP mainPolicy attributes

Also, as PD framework, it has following elements:

<actions>

The TSP Framework is able to configure multiple actions factories in order to
support multiple NMS. Refer to section 5.2.1 to get the details.

Note that this element is optional.

<troubleTicketActions>

The TSP Framework is able to configure trouble ticket actions factories. Refer to
section 5.2.2 to get the details.

Note that this element is optional.

<counterTotalNumberAlarms>

It specifies what to count for the Service Alarm field representing Total Number of
Alarms: either the current number of alarms in the group or the total number of
alarms since the group creation.

Note that this element is optional.

47

5.4.2.2 The Propagation Specific Policies

Propagation Policies are configuration settings which are specific to each of the
propagations defined in a TSP Value Pack.

These propagation specific configuration settings are defined inside the
<propagationPolicy name="…"> XML tag.

It has the following elements:

<serviceAlarm>

The <serviceAlarm> element specifies behavior around ServiceAlarm.

name type value

enableServiceAlarmCre
ation

boolean
(optional)

When true, the Service Alarm is automatically
created for this propagation.
When false (by default), no Service Alarm is
created for the propagation.

delayForServiceAlarmC
reation

long
(optional)

Delay, expressed in milliseconds, before the
creation of the associated Service Alarm.
Example: Setting the value: 10000 to this
property apply a delay of 10 seconds before
creating Service Alarms.
Default value is 2000.

delayForServiceAlarmC
learance

long
(optional)

Delay, expressed in milliseconds, before clearing
the service alarm.
Example: Setting the value: 0 (ms) to this
property does not delay the clearance of Service
Alarms after all conditions are met for clearing
Service Alarms.

Default value is 10000.

attachWholeSubTreeRo
otCauses

boolean
(optional)

When true, the whole sub-tree of Root Cause
alarms are attached to the Service Alarm, i.e. the
direct Root Cause alarms plus the Root Causes
alarms part of impacting states.

When false (by default), only the direct Root
Cause alarms are attached to the Service Alarm.

Table 22 – TSP serviceAlarm per-propagation configuration

<troubleTicket>

It is possible for TSP Value Packs to automatically create a trouble ticket associated
to a Service Alarm.

The following configuration parameters are available that control the creation of
trouble tickets for Service Alarms:

name type value

automaticTroubleTicke
tCreation

boolean When false, does not automate the creation of a
trouble ticket once a Service Alarm is created
When true, automates the creation of a trouble
ticket once a Service Alarm is created

48

propagateTroubleTicke
tToSubAlarms

boolean When true all sub-alarms (of the Service alarm),
are associated to the trouble ticket linked with
the Service Alarm
When false, sub alarms are not associated to the
trouble ticket linked with the Service Alarm

propagateTroubleTicke
tToMasterAlarm

boolean When false, if one sub-alarm has a trouble ticket,
the Service Alarm will not be linked to this
trouble ticket.
When true, if one sub-alarm has a trouble ticket,
the Service Alarm will be linked to this trouble
ticket

delayForTroubleTicket
Creation

long
(optional)

Delay, expressed in milliseconds (after the
creation of a Service Alarm) before the associated
trouble ticket is created
Default is 10000.

Table 23 – TSP troubleTicket “per-propagation” configuration

Note that the <troubleTicket> container element is however optional.

<groupTickFlagAware>

This optional element of type boolean, when set to true, indicates that at regular
tick intervals, the TSP Scenario, if customized for that, will execute some user
code.

Hence it should not be changed unless required by VP developer.

<propagationRule>

Not used.

<nodes>

This optional element is a sequence <dbType> elements used to configure the
topology nodes. A <dbType> element is defined by

name type value

key
Property Defines the type of the node to include

<poiCategories>

This optional element is a sequence <poiCategory> elements used to configure the
Point Of Interest Categories. A < poiCategory > element is defined by

name type value

key
Property Defines the POI category to assign

<thresholdValues>

This optional element is a sequence of 6 elements used to configure the Threshold
values. Those elements are in strict order

name type value

49

OK
Property Defines the threshold for state OK

LOW
Property Defines the threshold for state LOW

MEDIUM
Property Defines the threshold for state MEDIUM

HIGH
Property Defines the threshold for state HIGH

CRITICAL
Property Defines the threshold for state CRITICAL

DOWN
Property Defines the threshold for state DOWN

Each of the Threshold value above should be defined using 3 elements:

name type value

perceivedSeverity
Property Defines the perceived severity for that threshold

value. Is one of :
- INDETERMINATE
- WARNING
- MINOR
- MAJOR
- CRITICAL
- CLEAR

availabilityPercentage
Property Defines the percentage of availability of the node

for that threshold value. Is a double.

poiImportance
Property Defines the importance for the POI for that

threshold value. Is one of:
- None
- Low
- Medium
- High
- Critical

You can have an example in section 0

<propagationObject >

This optional element is a string defining the propagation state name when
creating Node POIs and the name that should be used for creating Service Alarms.

<statusName>

This optional element is a string defining the attribute name used for status
attribute when creating Node POIs.

<percentageAvailabilityKey>

This optional element is a string defining the attribute name used for
percentageAvailability attribute when creating Node POIs.

Also, depending on customer Value Pack needs:

50

name Property
Value

<booleans> Property
(optional)

For defining multiple booleans for a
specific use-case.

<strings> Property
(optional)

For defining multiple strings for a
specific use-case.

<longs> Property
(optional)

For defining multiple longs for a specific
use-case.

Table 24 – TSP customized “per-propagation” configuration

5.5 Orchestra
An IM Value Pack usually brings its Orchestra configuration that should be added in
the global “OrchestraConfiguration.xml” file.

A typical IM Orchestra configuration is to forward alarms from PD to TSP.

An example is given in Figure 12 IM Orchestra configuration example .

Figure 12 IM Orchestra configuration example

For details on how to use the UCA-EBC V3.1 Orchestration feature, please refer to
[R1] Unified Correlation Analyzer for Event Based Correlation Reference Guide and
to [R2] Unified Correlation Analyzer for Event Based Correlation Value Pack
Development Guide

51

Chapter 6

Developing an IM Value Pack

The UCA for EBC Inference Machine SDK provides several Eclipse plugins to ease the
Value Pack development of IM Value Packs, PD Value Packs and TSP Value Packs.

6.1 Eclipse Plugins
The pre-requisite of using the Eclipse plugins is the installation of the UCA for EBC
Inference Machine Development Kit which is comprised of

 UCA for EBC Development Kit (see UCA for EBC Value Pack Development Guide)

 UCA for EBC Development Kit Inference Machine Extension

There are 4 pre-defined Value Pack that you can choose to create:

 Problem Detection only VP

 Problem Detection with topology-enabled VP (requires topology)

 Topology State Propagator only VP (requires topology)

 Inference Machine complete VP (requires topology)

Figure 13 - How to create a UCA EBC project in Eclipse

52

6.1.1 Problem Detection only Value Pack

When creating, your Value Pack, you should select only “Problem Detection
Scenario”

Figure 14 – Create PD only Value Pack

53

Figure 15 - Files to edit to configure MyFirstProblemDetectionValuePack

Step 3: Mandatory steps. Rename and edit “Problem_Skeleton.java”. Edit the
filters file. Configure the Main Policies and the Problem Specific Policies.

In src/test/resources com.hp.uca.expert.vp.pd.core
ProblemDefault.java is available as a reference (not for modification) for the

default code of the overridable methods.

The file to rename as <problem

name>.java and where to

override some methods . (see

7.4.2)

The filters file. (See 6.3.7)

The context file. To be modified

if a new GeneralBehavior

implementation is needed (see

7.4.5)

The place to configure Main

Policies and Problem Specific

Policies (see Error! Reference

source not found. and Error!

Reference source not found.)

54

6.1.2 UCA EBC Topology State PropagatorTopology State
Propagator only Value Pack

When creating, your Value Pack, you should select only “Topology State
Propagator Scenario”

Figure 16 – Create TSP only Value Pack

55

6.1.3 Inference Machine Value Pack

When creating, your Value Pack, you should select both “Problem Detection
Scenario” and “Topology State Propagator Scenario”

Figure 17 – Create IM Value Pack

6.2 Understanding the Use Cases

This chapter should guide you choosing the right skeleton for your VP.

Unfortunately, this chapter is not yet available.

6.3 Create a Simple PD VP
The objective of this chapter is to list and briefly explain the steps required to
create a meaningful Problem Detection Value Pack. For readability reasons, in this
entire chapter it is assumed that both the reader and the writer are developers of a
Problem Detection Value Pack and will be referred to as “We”.

56

6.3.1 Analyze the problems to be detected

Before creating a Problem Detection Value Pack, it is essential to identify all the
problems that could arise from an operations perspective, and the corresponding
alarms that will be generated in the context of each problem.

To use a medical analogy:

 Alarms are the symptoms

 Problem is the disease, and the

 Problem Detection Value Pack is the physician. Based on the symptoms
observed (the alarms received), she will diagnose the disease (identify the
problem).

Creating a Problem Detection Value Pack first implies listing all the potential
problems (and their associated alarms) that we want to identify.

To summarize, we need to:

 list all potential alarms that the NMS (Network Management System) may
receive

 do the RCA analysis: list the problems that might occur in the network and
that the user of a NMS is likely be interested in

 for each problem, identify which alarms are associated with the problem
(please note that an alarm can be associated with several problems)

6.3.2 Identify the different types of alarms

Among all the alarms associated with a problem, we need to separate out the
“trigger” alarms from the “sub-alarms”. Continuing with the medical analogy made
above, we want to separate the primary symptoms (trigger alarms) from the
secondary symptoms (sub-alarms). Trigger alarms are called as such because they
define the kind of Problem we are facing and they will trigger the creation of a
Problem Alarm.

At runtime, by default, a Problem Detection Value Pack considers that an instance
of a problem has occurred if the following criteria are met:

 one trigger alarm of the problem has been received

 at least one sub-alarm of the problem has been received

This default behavior can be customized (see sections 7.4 and 8.1.12)

Once the “trigger” alarms and “sub-“alarms have been identified,

Once we have the list of interesting problems (resulting from above step 6.3.1), the
list of interesting alarms, the association between alarms and problems,

We are ready to configure the filters of our Problem Detection Value Pack.

57

Filters give logical criteria to distinguish different alarms. They allow distinguishing
which alarm belongs to which problem, and with which potential role (trigger
alarm, sub-alarm …)

Filters are configured in a XML file.

See detailed explanation in section 6.3.7 Define the Filters. See also Annex B.

6.3.3 Configure the Time Window

Consider Tpb to be the time at which the problem occurred. Note that for Problem
Detection it is the time of the first trigger alarm.

 We have to configure a time window around Tpb where

 all alarms outside this time window will not be associated with the problem.

 all alarms inside this time window are potential candidate to be associated
with the problem

Note that time windows can be infinite.

The following diagram illustrates the time window, defined by
timeWindowBeforeTrigger and timeWindowAfterTrigger.

timeWindowBeforeTrigger and timeWindowAfterTrigger are properties

set in a configuration file. Refer to section 5.3.2.2

Figure 18 - Time window illustration

Alarms in grey are ignored because they are outside of the time window of the
problem.

Alarms in black are not ignored because they are inside the time window of the
problem. They will be evaluated by the Problem Detection Value Pack. Some of
them will meet the conditions to become sub-alarm of the problem, while some
others will not.

6.3.4 Create a Problem Alarm?

58

For each problem, we have to decide whether, at runtime, upon occurrence of the
problem, the Problem Detection Value Pack will create a Problem Alarm or re-use
(promote) the trigger alarm (or one of the trigger alarms) as a Problem Alarm.

This is done in the filters XML configuration file. See detailed explanation in section
6.3.7

If we have decided that a fresh problem alarm has to be created, we need to
configure an action to effectively create this problem alarm in the Network
Monitoring System (NMS).

We also need to configure when the Problem Alarm will be created. Problem alarm
can be created as soon as the problem is detected or after a given amount of time.
See Chapter 7.

6.3.5 Create a Trouble Ticket?

For each problem, we have to decide whether, at runtime, upon occurrence of the
problem, the Problem Detection Value Pack will raise a trouble ticket. . See Chapter
7.

6.3.6 Is the default behavior good enough?

Problem Detection proposes a default behavior which allows you to create a Value
Pack without having to go through heavier configuration phases than the ones
described in sections 6.3.1 to 6.3.5

Yet, the Problem Detection Framework is extremely open, and allows us to
customize almost any behavior we would like to change.

By default, the Problem Detection Framework sets the severity of the Problem
Alarm to be the severity of the sub-alarm (among all sub-alarms of the problem)
having the highest severity. We may want to change that rule. The Problem
Detection Framework allows you do just that.

Default behaviors and ways to customize them are detailed in See Chapter 7.

One of the default behaviors that frequently need to be modified is the way the
problem entity is calculated.

The problem entity represents information related to the network resource that is
common to all alarms of the problem. By default the problem entity is set to the
originatingManagedEntity of the trigger alarm, but it could be some location
information (“Paris_south _MKF2”) contained in the AdditionalText.

6.3.7 Define the Filters

Defining the filters is the primary and most important step when creating a
Problem Detection Value Pack. Defining filters is not only about specifying which
alarms are relevant to the Value Pack. It is also about specifying which alarm is

59

associated to which problem, and what is the role of each alarm: Problem Alarm,
trigger alarm, sub-alarm.

Since a Problem Detection Value Pack is a UCA for EBC Value Pack, defining filters
for Problem Detection Value Packs is done the same way as for any other UCA EBC
Value Pack.

The definition of filters is done in a file named
“ProblemDetection_filters.xml” located in
src/main/resources/valuepack/pd/

The filter file of a Problem Detection Value Pack can include several “top filter”
sections, one for each problem to detect. The example below shows the “top filter”
section of a “ProblemDetection_filters.xml” file for one problem named

“Problem_BitError”.

To see an example of a filter file that contains several “top filter” sections in order
to detect several problems, please consult the filter file of the Value Pack example
in Annex B.

60

<topFilter name="Problem_BitError">
 <anyCondition>

 <allCondition tag="TeMIP TT">
 <allCondition>

<stringFilterStatement>
<fieldName>originatingManagedEntity</fieldName>

 <operator>matches</operator>
 <fieldValue>motorola_omcr_system .* managedelement .*

bssfunction .* btssitemgr .*</fieldValue>
 </stringFilterStatement>

 <stringFilterStatement tag="Trigger ">
 <fieldName>additionalText</fieldName>
 <operator>contains</operator>

<fieldValue>[14] Bit error OOS threshold exceeded</fieldValue>
 </stringFilterStatement>
 <stringFilterStatement tag="Trigger ">

<fieldName>additionalText</fieldName>
<operator>contains</operator>
<fieldValue>[6] Remote Alarm OOS Threshold Exceeded</fieldValue>

 </stringFilterStatement>
 <stringFilterStatement tag="SubAlarm">

 <fieldName>additionalText</fieldName>
 <operator>contains</operator>
 <fieldValue>[10] Link Disconnected</fieldValue>

 </stringFilterStatement>
<stringFilterStatement tag="SubAlarm">
 <fieldName>additionalText</fieldName>
 <operator>contains</operator>
 <fieldValue>[0] Last RSL Link Failure</fieldValue>

 </stringFilterStatement>
 </anyCondition>

 </allCondition>

 <allCondition tag="TeMIP TT">
 <stringFilterStatement>

 <fieldName>userText</fieldName>
 <operator>matches</operator>
 <fieldValue>.*<action>UCA EBC .*</fieldValue>

 </stringFilterStatement>
<stringFilterStatement tag="ProblemAlarm">
 <fieldName>additionalText</fieldName>
 <operator>contains</operator>
 <fieldValue>site down (BitError)</fieldValue>

 </stringFilterStatement>
 </allCondition>

 </anyCondition>
</topFilter>

The tag <topFilter name="Problem_BitError"> signifies the beginning of the filters
definition for the “Problem_BitError” problem

The tags

 <anyCondition>

 <block A/>

 <block B/>

 …

</anyCondition>

mean that conditions from block A or conditions from block B must be met, or both.

The tags

<allCondition>

 <block A/>

 <block B/>

61

 …

</allCondition>

mean that conditions from block A and conditions from block B must be met.

The tags <anyCondition> and <allCondition> are recursive. A recursive tag is a tag
that can be included in the same tag several times as shown below:

<allCondition>

 <allCondition>

 <allCondition>

The tag

 <allCondition tag="TeMIP TT">

means that all alarms passing all the conditions included in this tag will be
associated to one given Trouble Ticket System, TeMIP TT in this case.

The possible values for the tag name are given in the <troubleTicketActions>
section of file ProblemXmlConfig.xml.

Please see section 5.3.2 for more information on the ProblemXmlConfig.xml file.

The tags

 <stringFilterStatement tag="Trigger">

 <fieldName>additionalText</fieldName>

 <operator>contains</operator>

 <fieldValue>[6] Remote Alarm OOS Threshold Exceeded</fieldValue>

 </stringFilterStatement>

mean that alarms having the additionalText field containing the text: “[6] Remote
Alarm OOS Threshold Exceeded” will be considered trigger alarms for the
“Problem_BitError” problem.

When The role of the
alarm is

And the definition of this role is

tag=“Trigger” Trigger alarm Alarm which is an important symptom of a
problem, and which triggers the creation
of a problem alarm

tag=“SubAlarm” Sub-alarm Alarm which is a symptom of a problem
and is grouped under a Problem alarm

tag=“ProblemAlarm” Problem alarm Alarm that summarizes the problem, and
is readable by the operator

tag="SubAlarm,Proble
mAlarm"

SubProblemalarm Alarm which is Problem alarm of a
problem, and sub-alarm of another
problem

Table 25 – PD: Possible roles for an alarm

62

If we want a trigger alarm to be used as a Problem Alarm (instead of creating a
fresh one), the tag of the trigger alarm has to be as follows: tag="Trigger,
ProblemAlarm".

6.3.8 Configure Value Pack

The file named “ValuePackConfiguration.xml” located in the
src/main/resources/valuepack/conf/ folder does not need to be

modified except the highlighted part below, which concerns mediation flows.
Detailed instructions are available in chapter ‘Value Pack definition file’ of the UCA
for EBC Reference Guide

Extract of ValuePackConfiguration.xml

<mediationFlows name="temipFlow" actionReference="TeMIP_FlowManagement"
flowNameKey="flowName">
<!-- Comment out the flowCreation and flowDeletion sections to use static flows
instead of dynamic flows -->
<flowCreation>
<actionParameter>
<key>operation</key>
<value>CreateFlow</value>
</actionParameter>
<actionParameter>
<key>flowType</key>
<value>dynamic</value>
</actionParameter>
<actionParameter>
<key>operationContext</key>
<value>uca_network</value>
</actionParameter>
<actionParameter>
<key>operationContext</key>
<value>uca_pbalarm</value>
</actionParameter>
</flowCreation>

The file named “context.xml” located in the
src/main/resources/valuepack/conf/ folder does not need to be

modified, unless you want to customize the enrichment example (enrichment bean
highlighted) or if you want to customize some behavior as explained in 7.4.5
For more information on context.xml, please refer to chapter ‘Value Pack
definition’ in the UCA for EBC Reference Guide

context.xml

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:jms="http://www.springframework.org/schema/jms"
xmlns:p="http://www.springframework.org/schema/p"
xmlns:context="http://www.springframework.org/schema/context"
xmlns:amq="http://activemq.apache.org/schema/core"
xmlns:util="http://www.springframework.org/schema/util"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd

63

http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd
http://www.springframework.org/schema/jms
http://www.springframework.org/schema/jms/spring-jms.xsd
http://activemq.apache.org/schema/core
http://activemq.apache.org/schema/core/activemq-core.xsd">

<context:annotation-config />

<bean id="enrichment" class="com.acme.enrichment.EnrichmentProperties">
<property name="configurationFileName" value="Enrichment.xml" />
<property name="jmxManager" ref="jmxManager" />
</bean>

<bean id="problemsFactory" class="com.hp.uca.expert.vp.pd.core.ProblemsFactory">
<property name="problemPackageName" value="com.hp.uca.expert.vp.pd.problem." />
<property name="problemClassNamePrefix" value="Problem_" />
<property name="problemClassName" value="ProblemDefault" />
<property name="generalBehaviorClassName" value="MyGeneralBehaviorExample" />
<property name="xmlProblemClassName" value="XmlProblem" />
<property name="xmlGenericDefaultPrefix" value="XmlGeneric_" />
<property name="problemContextPackage" value="com.hp.uca.expert.vp.pd.core." />
</bean>

</beans>

6.3.9 Configure specific settings

Main Policy is a configuration settings common to all problems defined in a
Problem Detection Value Pack. These main configuration settings are defined
inside the <mainPolicy> XML tag.

Problem Policies are configuration settings which are specific to each problem
defined in a Problem Detection Value Pack. These problem specific configuration
settings are defined inside the <problemPolicy name="…"> XML tag.

Main Policy and Problem Policies are configured in a file named
“ProblemXmlConfig.xml” located in
src/main/resources/valuepack/conf/.

Please note that the XML schema of this file named “ProblemXmlConfig.xsd”
is available in the src/main/resources/valuepack/conf/ folder.

You can also configure Transient Filtering, Actions, Trouble Tickets actions,
Problem Alarm handling, etc.

For details, refer to Configuration chapter.

6.3.10 Customize the behavior

<problemPolicy name="XmlGeneric_Synch">

[...]

64

<strings><string key="ProblemAlarmAdditionalText">
<value><![CDATA[site down (XmlGeneric Synch)]]></value>

</string>

</strings>

As explained in paragraph 7.4.1, it is possible to assign basic customization
directives for a specific problem (XmlGeneric_Synch in above extract).

6.4 Create a Simple TSP VP
The objective of this chapter is to list and briefly explain the steps required to
create a meaningful Topology State Propagator Value Pack. For readability
reasons, in this entire chapter it is assumed that both the reader and the writer are
developers of a Topology State Propagator Value Pack and will be referred to as
“We”.

6.4.1 Analyze the topology to be used and the propagations to be
detected

Before creating a Topology State Propagator Value Pack, it is essential to know on
which topology the Value Pack will be based on. The topology can defer on the
service model, on geographic criteria or other criteria.

Identify all the propagations that could arise induced by a state update of its
underneath (from a topology point of view) propagations. The state update can be
triggered by several alarms and conditions, depending on the context of each of
the propagations.

To continue with the medical analogy used in PD where:

 Alarms are the symptoms

 Problem is the disease, and the

 Problem Detection Value Pack is the physician. Based on the symptoms
observed (the alarms received), she will diagnose the disease (identify the
problem)

 The correlated information containing the disease (the Problem Alarm) will
be received by TSP

 TSP will analyze and, if the disease is extremely contagious, it will propagate
it, resulting for example in epidemics (propagation on all upper level of the
topology), if is less contagious will impact only groups with low immunity
systems (propagation on part of the upper level of the topology) or not
impact at all (no propagation in the topology).

 Other secondary symptoms like the fact that a large number of persons were
impacted before, so they stopped coming for example to the kindergarten.

 TSP will realize Service Impact Analysis, so for example epidemics in a
kindergarten can result in stopping the lessons activity (service) for a
period.

Creating a Topology State Propagator Value Pack first implies listing all the
potential propagations (and their associated states and alarms) that we want to
identify.

65

To summarize, we need to:

 Set the topology to put in place and establish the nodes and relationships
needed. For details on the topology extension, the [R9] Unified Correlation
Analyzer for Event Based Correlation Topology Extension Guide can be
consulted.

 Do the SIA analysis: detect the services on which the impact is wanted to be
computed

 Using the IM (RCA-SIA pattern): list all potential alarm that may come from,
standardly, a Problem Detection scenario (in the same or in a different
Value Pack). TSP can also be directly used for alarms coming directly from
NMS, but it is encouraged to use it in conjunction with PD as an IM package.

 List the propagations that might occur in the topology

 For each propagation, identify which alarms are associated with the
propagation (please note that an alarm can be associated with several
propagations).

6.4.2 Compute a State?

Default State computation is performed by TSP framework. It is however possible
to change this default computation to set your specific thresholds, etc…

If you want to change it in Java, then you need to override the method

boolean computeState(PropagationGroup group)

Note that the default behavior is to use the service

 TP_Service_StateCalculation.computePercentageAvailability()

Which calculates the percentage of availability of the impacted node and deduces
the state from the thresholdValues defined in configuration. Refer to section
5.4.2.2 for more information on those thresholdValues.

6.4.3 Identify the different types of alarms: Root Cause or Sub
Alarms

As for PD an identification of the different types of alarms was needed, the same
applies to TSP. Basically, as TSP is used in the IM on top of PD, a significant reduced
number of alarms should be considered to be received by TSP as alarms will
already be summarized before by PD into Problem Alarms. Among all the alarms
associated with a propagation, we need to separate out the “root cause” alarms
from the “sub-alarms”. Root Cause alarms are called as such because they have a
role in the propagation, by contributing to the trigger of re-computation of a
propagation’s State. Optionally, they can contribute to the creation, clearance or
update of a Service Alarm. Continuing with the medical analogy made above, we
want to separate the primary symptoms (disease which is a root cause alarm) from
the secondary symptoms (a large number of persons stopped coming to the
kindergarten which are sub-alarms).

At runtime, by default, a Topology State Propagator Value Pack considers that an
instance of a propagation has occurred if the following criteria is met:

The State of the propagation has been received. The computation of a
State is overridable method by the VP developer so depending on the

66

needs, the creation of a state can be based on different criteria (like for
example a certain number of root cause alarm received having their status
critical or other).

This default behavior can be customized (see section 8.1.12).

If the topology is set, if the possible impacting states and root cause alarms are
identified, as well as the propagations realizing the service impact analysis are set,
then the filters of our the Topology State Propagator Value Pack can be configured.
Optionally, if the Service Alarm creation option is enabled, the service alarm and
the “sub-“alarms have to identified, and tagged in the filters.

Filters give logical criteria to distinguish different alarms and states. They allow
distinguishing which alarm belongs to which propagation, and with which potential
role (root cause alarm, sub-alarm, service alarm.)

Filters are configured in a XML file.

See detailed explanation in section 6.4.6 Define the Filters. See also Annex E.

6.4.4 Create a Service Alarm?

In comparison with PD, in TSP creating a Service Alarm is optional. For each of the
propagations, we have to decide whether, at runtime, upon occurrence of the
propagation and based on several conditions meet, the TSP Value Pack will create a
Service Alarm. This alarm will contain particular fields and it can only be created by
the framework.

This is done in the filters XML configuration file. See detailed explanation in section
6.4.6.

As for the Problem Alarm in PD, there is the possibility for the Service Alarm to be
created or cleared after a configurable time, as described in section 5.4.2.2.

6.4.5 Create a Trouble Ticket?

For each of the propagations, as for the problem in PD, we have to decide whether,
at runtime, upon occurrence of the propagation, the TSP Value Pack will raise a
trouble ticket, as described in section 5.4.2.2.

Is the default behavior good enough?

Topology State Propagator, as Problem Detection, proposes a default behavior
which allows you to create a Value Pack without having to go through all the
configuration phases described in the upper sections.

Nevertheless, TSP Framework is extremely open, and allows the customization of
almost any behavior we would like to change.

Default behaviors and ways to customize them are detailed in Chapter 8.

6.4.6 Define the Filters

Defining the filters is the primary and most important step when creating a TSP
Value Pack. Defining filters is not only about specifying which events (state and
alarms or other events) are relevant to the Value Pack. It is also about specifying
which event is associated to which propagation, and what the role of each event is:
State, RootCauseAlarm, Service Alarm, or SubAlarm.

67

Since a TSP Value Pack is a UCA for EBC Value Pack, defining filters for TSP Value
Packs is done the same way as for any other UCA EBC Value Pack.

The definition of filters is done in a file named
“TopologyPropagation_filters.xml” located in
src/main/resources/valuepack/tp/

As for, PD the filter file of a TSP Value Pack can include several “top filter” sections,
one for each propagation to detect.

For TSP, a special top filter is defined in the
“TopologyPropagation_filters.xml”, the ReservedForGeneralBehavior, using

the extended mappers feature of UCA EBC V3.2. The example below shows the
contents of this “top filter”.

<topFilter name="ReservedForGeneralBehavior">
 <anyCondition>
 <anyCondition tag="PATTERN_Mappers">
 <allCondition tag="ComputeSourceUniqueIdMapper=NodeB_UniqueID_1">
 <instanceOfFilterStatement>
 <fullClassName>com.hp.uca.expert.alarm.AlarmCommon</fullClassName>
 </instanceOfFilterStatement>
 <stringFilterStatement>
 <fieldName>additionalText</fieldName>
 <operator>contains</operator>
 <fieldValue>PowerAntenna</fieldValue>
 </stringFilterStatement>
 </allCondition>
 <allCondition tag="ComputeSourceUniqueIdMapper=NodeB_UniqueID_2">
 <instanceOfFilterStatement>
 <fullClassName>com.hp.uca.expert.alarm.AlarmCommon</fullClassName>
 </instanceOfFilterStatement>
 <stringFilterStatement>
 <fieldName>additionalText</fieldName>
 <operator>contains</operator>
 <fieldValue>DIP_Failure</fieldValue>
 </stringFilterStatement>
 </allCondition>
 </anyCondition>
 </anyCondition>
</topFilter>

The tags used in defining the ReservedForGeneralBehavior top filter are defined in
the file “TopologyPropagation_tags.xml” shown in the example below.

68

<?xml version="1.0" encoding="UTF-8"?>
<tags xmlns="http://hp.com/uca/expert/filter/tags"
xmlns:jxb="http://java.sun.com/xml/ns/jaxb"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <groups>
 <group name="GeneralBehavior">
 <simpleTags>
 </simpleTags>
 <paramTags>
 <paramTag name="ComputeSourceUniqueIdMapper" default="computeSourceUniqueId"/>
 </paramTags>
 </group>

 <group name="TopologyPropagation">
 <simpleTags>
 <simpleTag name="ServiceAlarm"/>
 <simpleTag name="SubAlarm"/>
 <simpleTag name="RootCauseAlarm"/>
 </simpleTags>
 <paramTags>
 </paramTags>
 </group>

 <group name="GraphDB">
 <simpleTags>
 </simpleTags>
 <paramTags>
 <paramTag name="CypherQuery"
enum="GetCellFromNodeBOrBts,GetCustomerFromCell,GetNodeIdFromBtsOrNodeB,GetRelIdFromDigitalP
ath,GetNodeIdFromDigitalPath,GetNodeId,GetSite,GetPortLink"/>
 </paramTags>
 </group>
 </groups>
</tags>

In plus of the definition of the ReservedForGeneralBehavior top filter, propagations
are defined in the “TopologyPropagation_filters.xml” file. The example

below shows the “top filter” section of a
“TopologyPropagation_filters.xml” file for one propagation named

“Propagation_BtsOrNodeB”.

To see an example of a filter file that contains several “top filter” sections in order
to detect several propagations, please consult the filter file of the Value Pack
example in Annex E.

69

<topFilter name="Propagation_BtsOrNodeB" tagsGroup="TopologyPropagation">
 <anyCondition>
 <anyCondition tag="PATTERN_SubAlarm">
 <anyCondition tag="SubAlarm">
 <allCondition>
 <instanceOfFilterStatement>
 <fullClassName>com.hp.uca.expert.alarm.AlarmCommon</fullClassName>
 </instanceOfFilterStatement>
 <stringFilterStatement>
 <fieldName>probableCause</fieldName>
 <operator>contains</operator>
 <fieldValue>houston we have a future sub service alarm!</fieldValue>
 </stringFilterStatement>
 </allCondition>
 </anyCondition>
 </anyCondition>
 <anyCondition tag="PATTERN_RootCause">
 <anyCondition tag="RootCauseAlarm">
 <allCondition>
 <instanceOfFilterStatement>
 <fullClassName>com.hp.uca.expert.alarm.AlarmCommon</fullClassName>
 </instanceOfFilterStatement>
 <stringFilterStatement>
 <fieldName>userText</fieldName>
 <operator>matches</operator>
 <fieldValue>
 <![CDATA[.*<action>UCA EBC.*</action><trigger>.*</trigger><group>.*</group>.*]]>
 </fieldValue>
 </stringFilterStatement>
 <stringFilterStatement>
 <fieldName>additionalText</fieldName>
 <operator>contains</operator>
 <fieldValue>PowerAntenna</fieldValue>
 </stringFilterStatement>
 </allCondition>
 </anyCondition>
 </anyCondition>
 <anyCondition tag="PATTERN_ServiceAlarm">
 <anyCondition tag="ServiceAlarm">
 <allCondition>
 <allCondition>
 <stringFilterStatement>
 <fieldName>userText</fieldName>
 <operator>matches</operator>
 <fieldValue>
 <![CDATA[.*<action>UCA
EBC.*</action><trigger>.*</trigger><propagationGroup>.*</propagationGroup>.*]]>
 </fieldValue>
 </stringFilterStatement>
 </allCondition>
 <anyCondition>
 <stringFilterStatement>
 <fieldName>additionalText</fieldName>
 <operator>contains</operator>
 <fieldValue>houston we have a propagation!</fieldValue>
 </stringFilterStatement>
 </anyCondition>
 </allCondition>
 </anyCondition>
 </anyCondition>

The tag <topFilter name="Propagation_BtsOrNodeB"> signifies the beginning of the
filters definition for the “Propagation_BtsOrNodeB” propagation

The tags

 <anyCondition>

 <block A/>

 <block B/>

70

 …

</anyCondition>

mean that conditions from block A or conditions from block B must be met, or both.

The tags

<allCondition>

 <block A/>

 <block B/>

 …

</allCondition>

mean that conditions from block A and conditions from block B must be met.

The tags <anyCondition> and <allCondition> are recursive. A recursive tag is a tag
that can be included in the same tag several times as shown below:

<allCondition>

 <allCondition>

 <allCondition>

Please see section 6.4.8 Configure for more information on the
PropagationXmlConfig.xml file.

When The role of the
alarm is

And the definition of this role is

tag=“RootCauseAlarm” Root Cause Alarm Alarm which is an important root cause
of a propagation, and which
contributes to the creation of the
service alarm

tag=“SubAlarm” Sub Alarm Alarm which contributes to the
correlation of the propagation and is
grouped under the Service alarm

tag=“ServiceAlarm” Service Alarm Alarm that summarizes the
propagation, and is readable by the
operator

Table 26 – TSP: Possible roles for an alarm

6.4.7 Configure Value Pack

The file named “ValuePackConfiguration.xml” located in the

src/main/resources/valuepack/conf/ folder does not need to be

modified except the highlighted part below, which concerns mediation flows.
Detailed instructions are available in chapter ‘Value Pack definition file’ of the UCA
for EBC Reference Guide

Extract of ValuePackConfiguration.xml

71

<mediationFlows name="temipFlow" actionReference="TeMIP_FlowManagement"
flowNameKey="flowName">
<!-- Comment out the flowCreation and flowDeletion sections to use static flows
instead of dynamic flows -->
<flowCreation>
<actionParameter>
<key>operation</key>
<value>CreateFlow</value>
</actionParameter>
<actionParameter>
<key>flowType</key>
<value>dynamic</value>
</actionParameter>
<actionParameter>
<key>operationContext</key>
<value>uca_network</value>
</actionParameter>
<actionParameter>
<key>operationContext</key>
<value>uca_pbalarm</value>
</actionParameter>
</flowCreation>

The file named “context.xml” located in the
src/main/resources/valuepack/conf/ folder does not need to be

modified, unless you want to customize the enrichment example (enrichment bean
highlighted) or if you want to customize some behavior as explained in 7.4.5
For more information on context.xml, please refer to chapter ‘Value Pack
definition’ in the UCA for EBC Reference Guide

context.xml

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:jms="http://www.springframework.org/schema/jms"
xmlns:p="http://www.springframework.org/schema/p"
xmlns:context="http://www.springframework.org/schema/context"
xmlns:amq="http://activemq.apache.org/schema/core"
xmlns:util="http://www.springframework.org/schema/util"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd
http://www.springframework.org/schema/jms
http://www.springframework.org/schema/jms/spring-jms.xsd
http://activemq.apache.org/schema/core
http://activemq.apache.org/schema/core/activemq-core.xsd">

<context:annotation-config />

<bean id="propagationsFactory" class="com.hp.uca.expert.vp.tp.core.PropagationsFactory">
<property name="propagationPackageName" value="com.hp.uca.expert.vp.pd.propagation." />
<property name="propagationClassNamePrefix" value="Propagation_" />
<property name="propagationClassName" value="PropagationDefault" />
<property name="generalBehaviorClassName" value="GeneralBehaviorDefault" />
<property name="xmlPropagationClassName" value="XmlPropagation" />
<property name="xmlGenericDefaultPrefix" value="Xml_" />
<property name="propagationContextPackage" value="com.hp.uca.expert.vp.tp.core." />
</bean>

</beans>

72

6.4.8 Configure specific settings

Main Policy is a configuration settings which is common to all propagations defined
in a TSP Value Pack. These main configuration settings are defined inside the
<mainPolicy> XML tag.

Propagation Policies are configuration settings which are specific to each
propagation defined in a TSP Value Pack. These propagation specific configuration
settings are defined inside the <propagationPolicy name="…"> XML tag.

Policies are configured in a file named “PropagationXmlConfig.xml” located
in src/main/resources/valuepack/conf/.

Please note that the XML schema of this file named
“PropagationXmlConfig.xsd” is available in the
src/main/resources/valuepack/conf/ folder.

For details, refer to Configuration chapter 5.4.2.

6.5 Create a Standard IM VP

The objective of this chapter is to list and briefly explain the steps required to
create a meaningful Inference Machine Value Pack.

Unfortunately, this chapter is not available at the moment.

You can refer to the IM example delivered with the IM SDK for a good example of a
standard IM VP.

73

Chapter 7

Advanced features of Problem Detection

Once configured (see section 5.3), a Problem Detection Value Pack runs with a
standard behavior.

This default behavior is rich in the sense that, in many cases, it does not have to be
altered or extended.

However for the use cases where modification or extension is required, Problem
Detection offers the flexibility to change the default behavior.

The default behavior is presented in section 7.1.

The ways to customize the default behavior are described in section 7.4.

7.1 The default behavior explained

The Problem Detection Framework is a set of Java libraries, with some Java classes
that can be extended and methods overridden in order to change the default
behavior of Problem Detection Value Packs.

Each of the following methods has a default behavior, which can be customized by
overriding the method.

The default behavior of all these methods is available by consulting the javadoc.
The implementation code of these methods is available in the example value pack
delivered as part of the Problem Detection Dev Kit (See 0 pd-example, content of
src/test/resources) The code of each of these methods is executed for every
problem for which that method and can be overridden by the value pack developer.

Firstly, an example is presented in 7.1.1 and secondly the different interfaces
available.

7.1.1 Example

An example of how the workflow of the different methods triggered in the case of
an alarm Network State Update is shown in the sequence diagram in Figure 19,
where an alarm clearance is managed for the following context: alarm 1 is Problem
Alarm in group1 of Problem1, sub Alarm in group2 of Problem2 and has no role for
any of Problem3’s groups.

74

Figure 19 Alarm clearance sequence diagram example

Let’s say that at before the alarm1 clearance is received, the groups are as shown
in Figure 20.

Figure 20 PD: Alarm clearance example: PD group updates Step1

The alarm1 clearance is received and, according to the sequence diagram in Figure
19Figure 26, a number of methods will be called by the PD framework. Therefore,
the problem alarm in group1 of PB1 will be cleared an removed from the Working
Memory. Concerning the group2 in PB2, alarm1 has a role as sub alarm, but its
clearance will result in the computation of the group2 from PB2 clearance, but we
assume that it will have an impact only in its severity change for example, but the
problem alarm in PB2 group2 will still be present. Concerning group1 in PB3 there
will be no impact. Therefore, the groups could look like represented in Figure 21.

75

Figure 21 PD: Alarm clearance example: PD group updates Step2

7.1.2 Alarm Role Check

7.1.3 EventRoleCheck

7.1.4 Problem Alarm Creation

Method used to check if ProblemAlarm should be created

76

isAllCriteriaForProblemAlarmCreation(Group)

Methods used during ProblemAlarm Creation

calculateReferenceAlarm(Group)

calculateProblemAlarmManagedEntity(Group)

calculateProblemAlarmAlarmType(Group)

calculateProblemAlarmProbableCause(Group)

calculateProblemAlarmAdditionalText(Group)

calculateProblemAlarmOperatorNote(Group)

calculateProblemAlarmUserText(Group, Action)

calculateProblemAlarmEventTime(Group)

calculateProblemAlarmOtherAttribute(Action)

7.1.5 Common Entity Check

Methods used to calculate Information for optimizations

77

78

7.1.6 Group update

Methods used to manage the group lifecycle, and its associated alarms

79

7.1.7 Network State Update

80

7.1.8 Operator State Update

81

82

7.1.9 Problem State Update

Methods used to manage the Trouble Ticket lifecycle when related to a

 Problem Alarm

 SubAlarm

 Orphan Alarm

And its consequence

83

7.1.10 Attribute Update

Methods used to manage a Severity or an Attribute Update of a:

 Problem Alarm

 SubAlarm

 Orphan Alarm

And its consequence

84

7.1.11 Periodic Check

85

7.1.12 Alarm eligibility update

86

7.1.13 Event eligibility update

87

7.1.14 Tags handling

These are features introduced in V3.2. They are used to control the tag names used
by the Problem Detection filters tags.

88

89

7.2 Generic Events (other than Alarm types) are supported
Problem Detection V3.2 is able to correlate generic events and group them. Hence:

 The Trigger of a PD correlation group can be now an Event (type introduced in UCA-
EBC V3.1)

Most methods are applicable therefore for the Event type as parameter and not only Alarm.
That explains why some methods are now deprecated.

A VP using PD with Events (other than Alarm types) only is delivered as an example with the
IM SDK, described in Annex D.

7.3 Computing Problem Information starting V3.2
When new alarm comes in Problem Detection, Problem information is now computed in
two ways, described in the following subsections (7.3.1 and 7.3.2).

http://peterv3.gre.hp.com:9010/job/inference-machine-doc/jdk=JDK7,platform=linwin/Documentation_(html)/problem-detection/info3.2.html#deprecated

90

7.3.1 Case where Problem Detection is topology-aware

In such a case, the following conditions are checked by default:

 MainPolicy.enableTopoAccess attribute is set to true
 the CypherQuery tag is present in the passing filter tags parameters and should

provide the name of the Cypher Query to execute

If conditions are passed, both methods GeneralBehaviourDefault.computeSourceUniqueId
(Event event) and ProblemDefault.computeDbRecords(String dbUniqueIdReference, Event
event) are used to compute the Problem Alarm information.

Notes:

 The above default conditions can be changed by overriding
the ProblemDefault.isAllowingDbAccess(Event event) method.

 In case of successful computation,
method ProblemDefault.computeProblemEntity(Event event) is therefore not
used.

7.3.2 Default case (non-topology aware)

If above case does not apply or fails, the new ProblemDefault.computeProblemEntity(Event
event) is used.

7.3.3 ProblemXmlConfig schema changes

7.3.3.1 Namespace

Some elements defined in the ProblemXmlConfig.xml configuration file are now coming
from the common schema defined in the IM common library, having therefore a different
namespace. Hence, existing configuration file should be migrated. Refer to “0 How do I
migrate my PD VP 3.0/3.1 to 3.2?” migration steps for more information.

7.3.3.2 MainPolicy

New attribute enablePrioritySort : Boolean flag indicating whether the groups should be
sorted on priority order or not. Default is false.

New attribute multipleParentSupport : Boolean flag indicating whether an alarm grouping
will send the parent relationship only for the highest priority parent (false), or for each of
the ProblemAlarm where this alarm is grouped (true). Default is true.

New attribute enableTopoAccess : Boolean flag indicating whether to use topologyAccess
when computing information for Problem Alarm (by calling computeSourceUniqueID(Event
event) and computeDBRecords() methods) during the workflow) (true) or not (false). Default
is false.
When true, the computeProblemEntity(Event event) is not called. Attention, this uses Neo4j
database, so requires Topology license.

7.3.3.3 ProblemPolicy

New attribute enableComputeProblemEntityFromMappers: When true, enables the use of
calling mappers in computeProblemEntity(). Default is true,

New attribute enableComputeProblemEntityFromFields: When true, enables computation
of fields key/value pairs in computeProblemEntity(). Default is false,

91

New element computeProblemEntityFromFields: Configuration of the FieldsChooser
element, which is a sequence of fields to use as keys. Called in computeProblemEntity()
when computation of fields key/value pairs is enabled and when
ComputeProblemEntityFields tag is not used.

7.3.4 ProblemDefault.computeProblemEntity(Event event)

This V3.2 method that takes Event as parameter. It is called by the existing
computeProblemEntity(Alarm alarm) method.

The default behavior of the new computeProblemEntity(Event) method has been
completely improved to satisfy most of the end-user needs.
It executes the following procedures (7.3.4.1, 7.3.4.2 and 7.3.4.3) in respective order.

7.3.4.1 Usage of extended mappers

Firstly, it makes use of the UCA-EBC V3.2 feature: the extended mappers.

When an event comes in the Problem Detection Value Pack, it is checked against the
presence of the filter tag named "ComputeProblemEntityMappers" which is a parameter tag
that should contain the name of the mapper(s) to use for computing the problem entity.

If the tag is present in the incoming filtered alarm, and if the mappers referenced in this tag
are well defined, the mappers are executed against the incoming alarm and the result of
each mapper is used as one element of the problem entity list returned by this function.

The usage of extended mappers is automatically taken into account.

Notes about mappers’ usage:

 The mappers usage can be disabled by setting the corresponding
ProblemPolicy.enableComputeProblemEntityFromMappers attribute to false in
ProblemXmlConfig.xml file. By default, it is considered as true.

 Each mapper name in the "ComputeProblemEntityMappers" tag should be separated by ".".
 You can change the name of the filter tag used by overriding the

getProblemEntityMappersTag() method of your problem.

7.3.4.2 Direct mapping of alarm fields as key/value pairs

Secondly, if requested, it can make use of the fields of the alarm computed as key/value
pair. This function work as described below, each option being evaluated in following order:

1. Use of a well-known tag

If the filter tag "ComputeProblemEntityFields" is present in the incoming alarm filtered tags,
that tag should contain the name of the field(s) to use for computing the problem entity. Each
field described in this tag is checked against its presence in the alarm and the resulted
problemEntity is computed as $field.name$separator$field.value.

Notes about ComputeProblemEntityFields filter tag usage:

 The computation of the key/value pairs can be enabled by setting the corresponding
ProblemPolicy.enableComputeProblemEntityFromFields attribute to true in
ProblemXmlConfig.xml file. By default, it is considered as false; hence this feature is by
default not used.

 Each field name in the "ComputeProblemEntityFields" tag should be separated by ".".

92

 You can change the name of the filter tag used by overriding the
getProblemEntityFieldsTag() method of your problem.

 You can change the value of $separator used by overriding the
getProblemEntitySeparator() method of your problem. By default, it is "=".

2. Use of V3.2 policy

The corresponding ProblemPolicy.computeProblemEntityFromFields element can be defined
in ProblemXmlConfig.xml file and is used for computing the problem entity. This policy
defines a sequence of XML field elements and a keyValueSeparator XML element which is by
default "=".

Each field described in this XML element is used as one element of the problem entity list
returned by the computeProblemEntity() method. Each field is defines either a tagName,
either a fieldName.

When tagName is defined, it corresponds to a tag that should be present if the incoming
alarm filtered tags which should define the field of the alarm to take into account.

It is then checked against its presence in the alarm filtered tags and the resulted
problemEntity is computed as $alarmField$keyValueSeparator$alarmField.value, where
$alarmField should be present in the alarm and is equivalent to $field.key.tagName.value

When tagName is not defined and fieldName is defined, it corresponds directly to the field of
the alarm to take into account.

The field name is then checked against its presence in the alarm and the resulted
problemEntity is computed as $fieldName$keyValueSeparator$fieldName.value

Notes about computeProblemEntityFromFields policy usage:

 The computation of the key/value pairs can be enabled by setting the corresponding
ProblemPolicy.enableComputeProblemEntityFromFields attribute to true in
ProblemXmlConfig.xml file. By default, it is considered as false; hence this feature is by
default not used.

 If the filter tag "ComputeProblemEntityFields" is present in the incoming alarm filtered tags,
it supersedes the policy; hence the policy is not used.

 You can ignore a specific value for each field using the valueIgnored XML element associated
to it.

7.3.4.3 Default mode

When none of above two methods is used, the function returns as previously (up to V3.1)
the originating managed entity of the incoming Alarm.

7.3.4.4 Modification of examples

The pd-example value pack contains the updated classes Problem_Synch and
Problem_BitError, which are showing the usage of extended mappers feature to compute
their problem entity based on bsc and bts identifiers. The computeProblemEntity() function
has then been removed from those classes, which are now using the mapper
getBscBtsFromUserText instead.

93

7.3.5 GeneralBehaviourDefault.computeSourceUniqueId(Event
event)

This method is used to calculate the unique identifier from information source stored in the
event. It is called when Problem Detection is topology-aware, i.e. when the
MainPolicy.enableTopoAccess attribute is set to true. In such a case, a special filter should be
defined with the ReservedForGeneralBehavior as the filter name.

Inside this filter, the ComputeSourceUniqueIdMapper tags are used to compute the source
unique Id. When mappers are defined in the topFilter having the name
ReservedForGeneralBehavior, Problem Detection will call the computeSourceUniqueId(Event)
method.

Example (extracts of filters and mappers files):

<topFilter name="ReservedForGeneralBehavior">
 <anyCondition>
 <anyCondition tag="PATTERN_Mappers">
 <allCondition tag="ComputeSourceUniqueIdMapper=NodeB_UniqueID_1">
 <instanceOfFilterStatement>
 <fullClassName>com.hp.uca.expert.alarm.AlarmCommon</fullClassName>
 </instanceOfFilterStatement>
 <stringFilterStatement>
 <fieldName>additionalText</fieldName>
 <operator>contains</operator>
 <fieldValue>PowerAntenna</fieldValue>
 </stringFilterStatement>
 </allCondition>
 <allCondition tag="ComputeSourceUniqueIdMapper=NodeB_UniqueID_2">
 <instanceOfFilterStatement>
 <fullClassName>com.hp.uca.expert.alarm.AlarmCommon</fullClassName>
 </instanceOfFilterStatement>
 <stringFilterStatement>
 <fieldName>additionalText</fieldName>
 <operator>contains</operator>
 <fieldValue>DIP_Failure</fieldValue>
 </stringFilterStatement>
 </allCondition>
 </anyCondition>
 </anyCondition>
</topFilter>

<mapper name='NodeB_UniqueID_1'>
 <pattern>
 <expression>[btsID]~[location]</expression>
 <matcher>(.*)</matcher>
 <mappedTo>$1</mappedTo>
 </pattern>
</mapper>

7.3.6 ProblemDefault.computeDbRecords(String
dbUniqueIdReference, Event event)

This method is used to calculate the Neo4j query, which will be executed to retrieve the
data base records for having the database id reference for the Event. Called by the Problem
Detection Framework when the MainPolicy.enableTopoAccess attribute is set to true and
when CypherQuery tag is present.

Example (extracts of filters and mappers files):

94

 <anyCondition tag="ProblemAlarm,CypherQuery=GetCellFromNodeBOrBts">
 <allCondition>
 <instanceOfFilterStatement>
 <fullClassName>com.hp.uca.expert.alarm.AlarmCommon</fullClassName>
 </instanceOfFilterStatement>
 <stringFilterStatement>
 <fieldName>userText</fieldName>
 <operator>matches</operator>
 <fieldValue>
 <![CDATA[.*<action>UCA EBC.*</action><trigger>.*</trigger><group>.*</group>.*]]>
 </fieldValue>
 </stringFilterStatement>
 <stringFilterStatement>
 <fieldName>additionalText</fieldName>
 <operator>contains</operator>
 <fieldValue>PowerAntenna</fieldValue>
 </stringFilterStatement>
 </allCondition>
 </anyCondition>

<cypherQuery name='GetCellFromNodeBOrBts'>
 <query>
 <![CDATA[START startNode=node:NodeBsByUniqueId(uniqueId = {nodeUniqueId})
MATCH (startNode)-[relation:ServingCell]->(endNode)<-[?:ServingCell]-(endNodeRelatives)
RETURN startNode, relation,endNode, endNode.domain, endNode.type, endNode.uniqueId,
count(endNodeRelatives)]]>
 </query>
</cypherQuery>

7.3.7 ProblemDefault.computeGroupPriority(Event event)

A default implementation has been introduced to make use of specific tags that can be set
at filters level: "Bundle.Priority" which defines the priority of the family of Problems and
"Problem.Priority" which defines the priority of the Problem. The values for these tags
should be numeric.

If one of those tags is present after filtering an alarm, the group priority is computed using
the formula:

Bundle.Priority * $priority.factor + Problem.Priority

If none of the tags is present, the group priority is left to null.

The group priority is automatically taken into account if the attribute enablePrioritySort is
defined to true in MainPolicy of ProblemXmlConfig.xml file. It means that all calls to
scenario.getGroups().getAllGroups() or to scenario.getGroups().getGroupsWhereXXX() will
return the groups sorted on priority.

By default, the attribute enablePrioritySort is considered as false if not present; hence
groups are not sorted by default.

Notes about the priority computation:

Lower priority numbers come first. A null priority comes last.

You can change the value of the $priority.factor used by overriding the
getBundlePriorityFactor() method of your problem.

You can change the name of the Bundle.Priority tag used by overriding the
getBundlePriorityTag() method of your problem.

You can change the name of the Problem.Priority tag used by overriding the
getProblemPriorityTag() method of your problem.

95

7.3.7.1 Example with Alarm
Trigger alarm A1 comes in with Bundle.Priority=10, Problem.Priority=1 => group G1 priority
will be set to 10001.
Trigger alarm A2 comes in with Problem.Priority=2 => group G2 priority will be set to 2.
Trigger alarm A3 comes in with no tags => group G3 priority will be set to null.
Now suppose an alarm S is subalarm of all 3 above groups => the
getGroups().getGroupsWhereAlarmSetAs(S, Qualifier.SubAlarm) will return the groups [G2,
G1, G3] in strict order if MainPolicy.enablePrioritySort is set.

7.3.7.2 Example with Event (other than Alarm)
Trigger event E1 comes in with Bundle.Priority=10, Problem.Priority=1 => group G1 priority
will be set to 10001.
Trigger event E2 comes in with Problem.Priority=2 => group G2 priority will be set to 2.
Trigger event E3 comes in with no tags => group G3 priority will be set to null.
Now suppose an event S is subEvent of all 3 above groups => the
getGroups().getGroupsWhereEventSetAs(S, EventQualifier.SubEvent) will return the groups
[G2, G1, G3] in strict order if MainPolicy.enablePrioritySort is set.

7.3.8 ProblemDefault.computeTimeWindow(Event event)
The default behavior of the default computeTimeWindow(Alarm alarm) method has been
changed to make use of specific tag "Trigger.TimeLimit.Seconds" that can be set at filters
level and can be applied on the Event generic type.

If this tag is present after filtering an alarm, and given that the value is T, the timeWindow
returned overrides the one defined at ProblemPolicy level and is computed as:

If T is 0: TimeWindowMode.NONE
If T is not 0: TimeWindowMode.TRIGGER and Window is [abs(T) * 1000 , abs(T) * 1000]
Note: you can change the name of the Trigger.TimeLimit.Seconds tag used by overriding the
getTriggerTimeLimitSecondsTag() method of your problem

7.4 How to customize default behavior
The ways to customize the behavior of a Problem Detection Value Pack are:

 to override some java methods specially defined for this purpose

 or to write some customization XML code.

The list of java methods that can be overridden is presented in section 7.1 Default
Behavior. The way to override those java methods is presented in section 7.4.2.

The way to modify the Problem Detection Value Pack default behavior by writing
XML code is presented in section 7.4.1 below.

7.4.1 XML customization

One aspect of the default behavior of Problem Detection Value Packs is to use the
“originatingManagedEntity” of the trigger alarm as “Problem Entity”.

Since one important objective of creating a Problem Alarm is to show clear and
concise information to the operator, it may be useful to redefine the way Problem
Detection computes the “Problem Entity” of a problem. This can be done without
writing any Java code as shown below. This can also be done by writing Java code
(see next section).

96

Below is an extract of “ProblemXmlConfig.xml” file located in the

src/main/resources/valuepack/conf/ folder.

It shows an example of two methods: the computeProblemEntity() and

calculateProblemAlarmAdditionalText() methods, being overwritten:

<problemPolicy name="XmlGeneric_Synch">
 <strings>
 <string key="computeProblemEntity">
 <value><![CDATA[
 if (alarm.getOriginatingManagedEntity().matches(
 "motorola_omcr_system .* managedelement .* bssfunction .* btssitemgr .*")) {

 varStr1=alarm.getCustomFieldValue("userText");

 if (varStr1 != null) {
 varStr1 = varStr1.replaceAll(" ", "");
 varStr1 = varStr1.replaceAll(":", " bts ");
 varResult = "bsc " +varStr1;
 }
 }
 if (varResult==null) {
 varResult = alarm.getOriginatingManagedEntity();
 }
]]>
 </value>
 </string>

 <string key="calculateProblemAlarmAdditionalText">

<value><![CDATA[site down (Synch_XML) - Generic XML]]></value></string>
 </strings>
</problemPolicy>

Also available are the three following methods. Note that all other methods listed
in 7.1 are only overridable by writing Java code.

<string key="isMatchingTriggerAlarmCriteria">

 <value><![CDATA[true]]></value>

</string>

<string key="isMatchingProblemAlarmCriteria">

 <value><![CDATA[true]]></value>

</string>

<string key="isMatchingSubAlarmCriteria">

 <value><![CDATA[true]]></value>

</string>

In paragraph 6.3.7Define the Filters, Table 12 – Tags for possible roles of an alarm,
we saw that the role of an alarm is determined by the tag associated to it in the
Filters xml file. However if some of the three methods above are overridden, then
what happens?
For instance, does the tag=”SubAlarm” takes precedence over the criteria defined
in the isMatchingSubAlarmCriteria(alarm) method ?

The answer is that for an alarm a to be considered a sub-alarm by the Problem
Detection Value Pack, it needs to be tagged as subalarm in the Filters xml file and
the method isMatchingSubAlarmCriteria(a) must return true.

97

7.4.2 Java customization

The main way to customize the default behavior of Problem Detection Value Packs
is to override some of the Java methods listed in section 7.1. There are three levels
of customization:

 Per problem (this section)

 For a set or for all problems (section 7.4.3 “My ProblemDefault”)

 For non-problem specific matters (section 7.4.5 “MyGeneralBehavior”)

The methods that can be overridden to customize the “problem specific” behavior
of a Problem Detection Value Pack are all listed in the ProblemInterface java
interface.

The methods that can be overridden to customize the “non-problem specific”
behavior of a Problem Detection Value Pack are all listed in the
GeneralBehaviorInterface java interface.

Figure 22 - One problem specific customization

ProblemDefault.java is the class implementing the methods of the
ProblemInterface as seen in Figure 22. It defines the default behavior of Problem
Detection Value Packs.

The way to override a method of the ProblemInterface is to create a customization
class per problem, which extends ProblemDefault.

Below is the “Problem_Skeleton.java” class created by the Eclipse plug-in. It
is located in src/main/java/[com.hp.uca.expert.vp.pd.problem]

/**
 * This Problem is empty and ready to define methods to
 * customize this problem
 */
package com.hp.uca.expert.vp.pd.problem;

import org.apache.log4j.Logger;
import com.hp.uca.expert.vp.pd.core.ProblemDefault;
import com.hp.uca.expert.vp.pd.interfaces.ProblemInterface;

public final class Problem_Skeleton extends ProblemDefault implements
 ProblemInterface {

 public
Problem_Skeleton() {
 super();

98

 setLog(Logger.getLogger
(Problem_Skeleton.class));
 }

}

Note that the name of the class, in the above example Problem_Skeleton, must be
changed to the name of the problem for which we want to customize the behavior.

The following equation must be true

Name of the customization class for problem X = name of problem X as
defined in filters file.

For example, if the extract of ProblemDetection_filters.xml is like this:
<topFilter name="Problem_LOS">

Then the extract of Problem_LOS.java must look like this:
public final class Problem_LOS extends ProblemDefault
implements ProblemInterface {

Below is the same file renamed as MyFirstProblem.java, which overrides both the
computeProblemEntity() and

calculateProblemAlarmAdditionalText() methods.

/**
 * This is my first Problem.
 * It customizes two methods:
 * - computeProblemEntity()
 * - calculateProblemAlarmAdditionalText()
 */
package com.hp.uca.expert.vp.pd.problem;

import org.slf4j.LoggerFactory;
import com.hp.uca.expert.vp.pd.core.ProblemDefault;
import com.hp.uca.expert.vp.pd.interfaces.ProblemInterface;

/**
 * @author Me
 *
 */
public final class MyFirstProblem extends ProblemDefault implements
 ProblemInterface {

public MyFirstProblem () {
 super();
 setLog(LoggerFactory.getLogger((MyFirstProblem.class));
 }

}
@Override
public List<String> computeProblemEntity(Alarm a) {

if (getLog().isTraceEnabled()) {
LogHelper.enter(getLog(), "computeProblemEntity()",a.getIdentifier());
}
String problemEntity = null;

99

List<String> problemEntities = new ArrayList<String>();

if (a.getOriginatingManagedEntity().matches(
"motorola_omcr_system .* managedelement .* bssfunction .* btssitemgr .*")) {

SupportedActions supportedActions = chooseSupportedActions(a, this);

String userText =
a.getCustomFieldValue(supportedActions.getAttributeUsedForKeyDuringRecognition
());

if (userText != null) {
userText = userText.replaceAll(" ", "");
String[] table = userText.split(":");

if (table.length >= 2) {

problemEntity = String.format("bsc %s bts %s", table[0],
table[1]);

problemEntities.add(problemEntity);
 }
 }
}

if (getLog().isTraceEnabled()) {
LogHelper.exit(getLog(), "computeProblemEntity()",
problemEntities.toString());
}
return problemEntities;
}

@Override
public String calculateProblemAlarmAdditionalText(Group group) {
return "site down (BitError)";

}

Which overridable methods will be called depending on the lifecycle of the alarm
and depending on the problem and its context.

The Problem Detection framework will automatically invoke the methods
whatToDoWhenXXX(…) listed in section 7.1, at precise times of the lifecycle of
every alarm.

For instance, when an alarm ‘alm1’ is cleared, the Problem Detection framework
will invoke the method whatToDoWhenXXXAlarmIsCleared(alm1…)

If ‘alm1’ belongs to only one problem “Problem A”, then the Problem Detection
framework will invoke the method whatToDoWhenXXXAlarmIsCleared(alm1 …)
present in the customization class of “Problem A” . If the method
whatToDoWhenXXXAlarmIsCleared() has not been overridden for “Problem A”, the
default method is invoked.

But if ‘alm1’ also belongs to “Problem B”, the Problem Detection framework will
also invoke the method whatToDoWhenXXXAlarmIsCleared(alm1 …), if present in
the customization class of “Problem B”, or the default method otherwise.

100

Depending of the position of the alarm in its lifecycle at a given time, the Problem
Detection framework will decide exactly which exact method(s)
whatToDoWhenXXX(..) to invoke.

In the above example, suppose ‘alm1’ belongs to “Problem A” and “Problem B”, and
that ‘alm1’ at the moment it gets cleared, is
- ‘subalarm’ for “Problem A”
- ‘orphan alarm’ for “Problem B”.

Then the methods

whatToDoWhenSubAlarmIsCleared(alm1) will be called for “Problem A”

whatToDoWhenOrphanAlarmIsCleared(alm1) will be called for “Problem B”

An orphan alarm for a given problem is an alarm that does not belong to any group
of the given problem.

A Candidate alarm for a given problem is an alarm that belongs to a group of the
given problem, but the problem alarm of this group has not yet come.

A Sub alarm for a given problem is an alarm that belongs to a group of the given
problem, and the problem alarm of this group has come.

Figure 23 below shows a graphical representation of the methods that will be
invoked based on the lifecycle of the alarm.

In

Figure 23, there are 3 alarms, ‘a1’, ‘a2’ and ‘a3’

 ‘a1’ belongs to “Problem A” and “Problem B”

 ‘a2’ is a trigger alarm and belongs to “Problem A” only

 ‘a3’ is a problem alarm and belongs to “Problem A” only

Each alarm at a given time of its life has a qualifier for each of the problem it
belongs to. It also has a consolidated view of its role across problems.

For example there is a time where ‘a1’ is ‘SubAlarm for “Problem A” and is ‘Orphan’
for “Problem B”. At this time the consolidated role of ‘a1’ across all problems will
be ‘SubAlarm’. This consolidated role will be placed in the “Pb” field of the alarm

101

© Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.28

a3 Qualifier for
Problem A

ProblemAlarm

methods to
invoke

whatToDoWhenProblemAlarmXXX()

a2 Qualifier for
Problem A

Trigger Trigger

methods to
invoke

whatToDoWhenSubAlarmXXX () whatToDoWhenSubAlarmXXXX ()

a1 Qualifier for
Problem A

Unnknown Candidate SubAlarm

methods to
invoke

whatToDoWhenOrphanAlarmXXXX() whatToDoWhenSubAlarmXXX () whatToDoWhenSubAlarmXXXX ()

Context of Problem A

alarm having a potential
role for Problem A

a1

trigger alarm
for Problem A

a2

problem alarm
for Problem A

a3

© Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.29

a1 Qualifier for
Problem B

Unknown Unknown Unknown

methods to
invoke

whatToDoWhenOrphanAlarm
XXX()

whatToDoWhenOrphanAlarm
XXX()

whatToDoWhenOrphanAlarm
XXX()

Context of Problem B

alarm having a potential
role for Problem B

a1

© Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.30

a3 Pb = PbAlarm

a2 Pb = Candidate SubAlarm

a1 Pb = Candidate Candidate SubAlarm

alarm having a potential
role for Problem s A & B

a1

trigger alarm
for Problem A

a2

problem alarm
for Problem A

a3

Consolidated Navigation field « Pb »

102

Figure 23 - Consolidation of alarm's qualifiers

7.4.3 My ProblemDefault

The benefit of extending ProblemDefault class is to modify the default behavior for
all problems or for a set of problems.

Figure 24 - MyProblemDefault: a customization for a group of problems

In the diagram above MyProblemDefault.java implements some or all of the
methods of ProblemInterface. Each problem customization class that extends
MyProblemDefault.java will benefit from the implementation of those methods. In
the diagram, by default, ProblemA1, ProblemA2 (hidden behind ProblemA1) and
ProblemA3 (hidden behind ProblemA1) will use the methods implemented in
MyProblemDefault.java. This happens only because the different propagation java
classes ProblemA1 to A3 explicitly extended in their java code the
MyProblemDefault. ProblemB will use the methods implemented in
ProblemDefault.java, unless these methods are overridden in ProblemB.java

For a comprehensive diagram showing the advanced possibilities and subtleties of
using extensions of Problemdefault.java, refer to Annex 0.

7.4.4 Problems initialization starting V3.2

Initialization of problems defined inside the <problemPolicy> tag in the

ProblemXmlConfig.xml file has changed starting V3.2.

Until V3.2, for a problem defined in the ProblemXmlConfig.xml file with only part of
the problem policies as described in section 5.3.2.2 The Problem Specific Policies,
the other policies are given default values. ProblemDefault (can be

103

MyProblemDefault) configuration is used only to initialize a problem whose policy
is not defined in the ProblemXmlConfig.xml, but as a top filter in a <topFilter>

tag of ProblemDetection_filters.xml file. Also, if no ProblemDefault policy tag is
defined in the ProblemXmlConfig.xml file, then the default values are applied as
given in the ProblemDefault.java class.

Starting V3.2, all the policies defined in the ProblemDefault problem policy (can be
MyProblemDefault) are applied to all the other Problems, if not overwritten by
their respective custom problem policy. Furthermore, for the policies seen in Table
19 – PD customized “per-problem” configuration: Strings, Longs and Booleans
(which contain a sequence of String, Long and Boolean types) defined in the
ProblemDefault are now valid for all the other Problems, so even if defined in a
custom problemPolicy they are added to the ones defined in the sequence, and not
overwritten. Therefore, if wanting specific behavior for each of the Problems, it is
better to empty the ProblemDefault configuration and defined it in each of the
custom problem policies. On the other hand, it is a good tip to identify what is
common to all problems and define it only once in the ProblemDefault
configuration.

What has not changed comparing to V3.1 is that ProblemDefault (can be
MyProblemDefault) configuration is also used to completely initialize a problem
whose policy is not defined in the ProblemXmlConfig.xml, but as a top filter in a
<topFilter> tag of ProblemDetection_filters.xml file. Also, if no ProblemDefault

policy tag is defined in the ProblemXmlConfig.xml file, then the default values are
applied as given in the ProblemDefault.java class.

In the following example of configuration in V3.1 the Strings for ProblemDefault,
Problem_Synch, Problem_BitError and Problem_Power are the same but have to
be written for each of them. Also, the Booleans defined in ProblemDefault
siteDown is valid also for Problem_Synch, Problem_BitError and Problem_Power,
and each of these two problems have and extra Boolean to be defined (synchPb,
bitErrorPb and powerPb). We observe also that the
delayForProblemAlarmCleareance is the same for all problems but has to be
redefined each time, as well as the timeWindowBeforeTrigger and the
TimeWindowAfterTrigger. The delayForTroubleTicketCreation defined in
ProblemDefault is the same as the one for Problem_Synch and Problem_BitError
and the delayForProblemAlarmCleareance defined in ProblemDefault is the same
as the one for Problem_ BitError.

…
<problemPolicy name="ProblemDefault">
 <problemAlarm>
 <delayForProblemAlarmCreation>1212</delayForProblemAlarmCreation>
 <delayForProblemAlarmClearance>0</delayForProblemAlarmClearance>
 </problemAlarm>
 <troubleTicket>
 <automaticTroubleTicketCreation>false
 </automaticTroubleTicketCreation>
 <propagateTroubleTicketToSubAlarms>false
 </propagateTroubleTicketToSubAlarms>
 <propagateTroubleTicketToProblemAlarm>false
 </propagateTroubleTicketToProblemAlarm>
 <delayForTroubleTicketCreation>60000</delayForTroubleTicketCreation>
 </troubleTicket>
 <groupTickFlagAware>false</groupTickFlagAware>
 <timeWindow>
 <timeWindowMode>None</timeWindowMode>
 <timeWindowBeforeTrigger>30000</timeWindowBeforeTrigger>
 <timeWindowAfterTrigger>30000</timeWindowAfterTrigger>
 </timeWindow>
 <booleans>
 <boolean key="siteDown">
 <value>true</value>
 </boolean>

104

 </booleans>
 <strings>
 <string key="ocName">
 <value>.uca_pbalarm</value>
 </string>
 </strings>
</problemPolicy>
…
<problemPolicy name="Problem_Synch">
 <problemAlarm>
 <delayForProblemAlarmCreation>5000</delayForProblemAlarmCreation>
 <delayForProblemAlarmClearance>10</delayForProblemAlarmClearance>
 </problemAlarm>
 <troubleTicket>
 <automaticTroubleTicketCreation>false
 </automaticTroubleTicketCreation>
 <propagateTroubleTicketToSubAlarms>false
 </propagateTroubleTicketToSubAlarms>
 <propagateTroubleTicketToProblemAlarm>false
 </propagateTroubleTicketToProblemAlarm>
 <delayForTroubleTicketCreation>60000</delayForTroubleTicketCreation>
 </troubleTicket>
 <groupTickFlagAware>false</groupTickFlagAware>
 <timeWindow>
 <timeWindowMode>Trigger</timeWindowMode>
 <timeWindowBeforeTrigger>30000</timeWindowBeforeTrigger>
 <timeWindowAfterTrigger>30000</timeWindowAfterTrigger>
 </timeWindow>
 <booleans>
 <boolean key="siteDown">
 <value>true</value>
 </boolean>
 <boolean key="synchPb">
 <value>true</value>
 </boolean>
 </booleans>
 <strings>
 <string key="ocName">
 <value>.uca_pbalarm</value>
 </string>
 </strings>
</problemPolicy>

<problemPolicy name="Problem_BitError">
 <problemAlarm>
 <delayForProblemAlarmCreation>1212</delayForProblemAlarmCreation>
 <delayForProblemAlarmClearance>0</delayForProblemAlarmClearance>
 </problemAlarm>
 <troubleTicket>
 <automaticTroubleTicketCreation>false
 </automaticTroubleTicketCreation>
 <propagateTroubleTicketToSubAlarms>false
 </propagateTroubleTicketToSubAlarms>
 <propagateTroubleTicketToProblemAlarm>false
 </propagateTroubleTicketToProblemAlarm>
 <delayForTroubleTicketCreation>60000</delayForTroubleTicketCreation>
</troubleTicket>
 <groupTickFlagAware>false</groupTickFlagAware>
 <timeWindow>
 <timeWindowMode>Trigger</timeWindowMode>
 <timeWindowBeforeTrigger>2500</timeWindowBeforeTrigger>
 <timeWindowAfterTrigger>5000</timeWindowAfterTrigger>
 </timeWindow>
 <booleans>
 <boolean key="siteDown">
 <value>true</value>
 </boolean>
 <boolean key="bitErrorPb">
 <value>true</value>
 </boolean>
 </booleans>
 <strings>
 <string key="ocName">
 <value>.uca_pbalarm</value>

105

 </string>
 </strings>
</problemPolicy>
<problemPolicy name="Problem_Power">
 <problemAlarm>
 <delayForProblemAlarmCreation>2700</delayForProblemAlarmCreation>
 <delayForProblemAlarmClearance>0</delayForProblemAlarmClearance>
 </problemAlarm>
 <troubleTicket>
 <automaticTroubleTicketCreation>false
 </automaticTroubleTicketCreation>
 <propagateTroubleTicketToSubAlarms>false
 </propagateTroubleTicketToSubAlarms>
 <propagateTroubleTicketToProblemAlarm>false
 </propagateTroubleTicketToProblemAlarm>
 <delayForTroubleTicketCreation>90000</delayForTroubleTicketCreation>
 </troubleTicket>
 <groupTickFlagAware>true</groupTickFlagAware>
 <timeWindow>
 <timeWindowMode>None</timeWindowMode>
 </timeWindow>
 <booleans>
 <boolean key="powerPb">
 <value>true</value>
 </boolean>
 </booleans>
 <strings>
 <string key="ocName">
 <value>.uca_pbalarm</value>
 </string>
 </strings>
</problemPolicy>
…

If we transform this configuration file in V3.2 and considering that these are all the
problems who have their top filter defined in the ProblemDetection_filters.xml (or
if there are other, then all the characteristics defined in ProblemDefault policy
apply on them), then we obtain the following lighter file:

…
<problemPolicy name="ProblemDefault">
 <problemAlarm>
 <delayForProblemAlarmCreation>1212</delayForProblemAlarmCreation>
 <delayForProblemAlarmClearance>0</delayForProblemAlarmClearance>
 </problemAlarm>
 <troubleTicket>
 <automaticTroubleTicketCreation>false
 </automaticTroubleTicketCreation>
 <propagateTroubleTicketToSubAlarms>false
 </propagateTroubleTicketToSubAlarms>
 <propagateTroubleTicketToProblemAlarm>false
 </propagateTroubleTicketToProblemAlarm>
 <delayForTroubleTicketCreation>60000</delayForTroubleTicketCreation>
 </troubleTicket>
 <groupTickFlagAware>false</groupTickFlagAware>
 <timeWindow>
 <timeWindowMode>None</timeWindowMode>
 <timeWindowBeforeTrigger>30000</timeWindowBeforeTrigger>
 <timeWindowAfterTrigger>30000</timeWindowAfterTrigger>
 </timeWindow>
 <booleans xmlns:p1="http://config.im.vp.expert.uca.hp.com/">
 <p1:boolean key="siteDown">
 <p1:value>true</p1:value>
 </p1:boolean>
 </booleans>
 <strings xmlns:p1="http://config.im.vp.expert.uca.hp.com/">
 <p1:string key="ocName">
 <p1:value>.uca_pbalarm</p1:value>
 </p1:string>
 </strings>
</problemPolicy>
…

106

<problemPolicy name="Problem_Synch">
 <problemAlarm>
 <delayForProblemAlarmCreation>5000</delayForProblemAlarmCreation>
 <delayForProblemAlarmClearance>10</delayForProblemAlarmClearance>
 </problemAlarm>
 <troubleTicket>
 <automaticTroubleTicketCreation>false
 </automaticTroubleTicketCreation>
 <propagateTroubleTicketToSubAlarms>false
 </propagateTroubleTicketToSubAlarms>
 <propagateTroubleTicketToProblemAlarm>false
 </propagateTroubleTicketToProblemAlarm>
 </troubleTicket>
 <groupTickFlagAware>false</groupTickFlagAware>
 <timeWindow>
 <timeWindowMode>Trigger</timeWindowMode>
 <timeWindowBeforeTrigger>30000</timeWindowBeforeTrigger>
 <timeWindowAfterTrigger>30000</timeWindowAfterTrigger>
 </timeWindow>
 <booleans xmlns:p1="http://config.im.vp.expert.uca.hp.com/">
 <p1:boolean key="synchPb">
 <p1:value>true</p1:value>
 </p1:boolean>
 </booleans>
</problemPolicy>
<problemPolicy name="Problem_BitError">
 <problemAlarm></problemAlarm>
 <troubleTicket>
 <automaticTroubleTicketCreation>false
 </automaticTroubleTicketCreation>
 <propagateTroubleTicketToSubAlarms>false
 </propagateTroubleTicketToSubAlarms>
 <propagateTroubleTicketToProblemAlarm>false
 </propagateTroubleTicketToProblemAlarm>
 </troubleTicket>
 <groupTickFlagAware>false</groupTickFlagAware>
 <timeWindow>
 <timeWindowMode>Trigger</timeWindowMode>
 <timeWindowBeforeTrigger>2500</timeWindowBeforeTrigger>
 <timeWindowAfterTrigger>5000</timeWindowAfterTrigger>
 </timeWindow>
 <booleans xmlns:p1="http://config.im.vp.expert.uca.hp.com/">
 <p1:boolean key="bitErrorPb">
 <p1:value>true</p1:value>
 </p1:boolean>
</problemPolicy>
<problemPolicy name="Problem_Power">
 <problemAlarm>
 <delayForProblemAlarmCreation>2700</delayForProblemAlarmCreation>
 </problemAlarm>
 <troubleTicket>
 <automaticTroubleTicketCreation>false
 </automaticTroubleTicketCreation>
 <propagateTroubleTicketToSubAlarms>false
 </propagateTroubleTicketToSubAlarms>
 <propagateTroubleTicketToProblemAlarm>false
 </propagateTroubleTicketToProblemAlarm>
 <delayForTroubleTicketCreation>90000</delayForTroubleTicketCreation>
 </troubleTicket>
 <groupTickFlagAware>true</groupTickFlagAware>
 <timeWindow>
 <timeWindowMode>None</timeWindowMode>
 </timeWindow>
 <booleans xmlns:p1="http://config.im.vp.expert.uca.hp.com/">
 <p1:boolean key="powerPb">
 <p1:value>true</p1:value>
 </p1:boolean>
 </booleans>
</problemPolicy>
…

107

7.4.5 MyGeneralBehavior

The methods that can be overridden to customize the “non-problem specific”
behavior of a Problem Detection Value Pack are all listed in the
GeneralBehaviorInterface Java interface.

A “non-problem-specific” behavior is a behavior that is not related to any problem
in particular.

For example, the behavior, in other words the things that are done, when a Problem
Detection Value Pack is initialized is a “non-problem-specific” behavior.

The way to customize a “non-problem-specific” behavior is presented in the
following steps:

 Create a MyGeneralBehavior.java (name can be different) Java class in the
following directory:
src/main/java/[com.hp.uca.expert.vp.pd.core].

 Ensure that the value of the property generalBehaviorClassName in
the file context.xml in
src/main/resources/valuepack/conf/ folder matches

MyGeneralBehavior , as shown in Figure 25 – PD MyGeneralBehavior name
matching

 Override the methods of the GeneralBehaviorInterface for which the
behavior has to be customized.

Figure 25 – PD MyGeneralBehavior name matching

Below is an example of a MyGeneralBehavior.java class that overrides one method
of the interface GeneralBehaviorInterface:
whatToDoWhenNewAlarmIsJustInserted()

108

public class MyGeneralBehavior extends GeneralBehaviorDefault implements
 GeneralBehaviorInterface {

/**
 *
 */
public MyGeneralBehavior() {
 super();
 setLog(LoggerFactory.getLogger(MyGeneralBehavior.class));
}
/*
 * (non-Javadoc)
 *
 * @see
 * com.hp.uca.expert.vp.pd.core.CustomDefault#whatToDoWhenNewAlarmIsJustInserted
 * (com.hp.uca.expert.alarm.Alarm)
 */
@Override
public void whatToDoWhenNewAlarmIsJustInserted(Alarm alarm) {
 if (getLog().isTraceEnabled()) {
 LogHelper.enter(getLog(), "whatToDoWhenNewAlarmIsJustInserted()",
 alarm.getIdentifier());
}
 if (getLog().isDebugEnabled()) {
 getLog().debug(
 "I am the method whatToDoWhenNewAlarmIsJustInserted() of ProblemDefault : "
 + this.getClass().getSimpleName());
 getLog().debug(
 "whatToDoWhenNewAlarmIsJustInserted(): new alarm inserted : "
 + alarm.getIdentifier());
 }
 Flag flag = new Flag("JustInserted: " + alarm.getIdentifier(),
 "Flag checking whatToDoWhenNewAlarmIsJustInserted()", true);
 getScenario().getSession().insert(flag);

 if (getLog().isTraceEnabled()) {
 LogHelper.exit(getLog(), "whatToDoWhenNewAlarmIsJustInserted()");
 }
 }

}

7.4.6 Enrichment

There are three ways to enrich alarms in Problem Detection

Through UCA-EBC lifecycle, synchronous enrichment is possible. Refer to UCA for
EBC Reference Guide.

A “One time” and “independent of all problems” synchronous enrichment is
possible by overriding the method whatToDoWhenNewAlarmIsJustInserted()
Independent of all problems means that the enrichment applies to all alarms
managed by the value pack regardless of the problem(s) they correspond to.

A “per problem” enrichment is possible by overriding the method
isInformationNeededAvailable() in the problem’s customization class

This enrichment can be synchronous, if the method
isInformationNeededAvailable() is overridden with synchronous code.

This enrichment can be asynchronous, if the method
isInformationNeededAvailable() is overridden with asynchronous code.

109

The enrichment is called “synchronous” when the Problem Detection value pack
waits for the enrichment of the alarm to be completed before to proceed with the
alarm processing.

The enrichment is called “asynchronous” when the Problem Detection value pack
does not wait for the enrichment of the alarm to be completed. The execution
continues and the value pack is notified later through a callback that the
enrichment has been completed

Example One time enrichment “independent of all problems”

The example below shows the method whatToDoWhenNewAlarmIsJustInserted ()
being overridden. The method adds a new custom field in all incoming alarms.

public class MyGeneralBehavior extends
 GeneralBehaviorDefault
implements GeneralBehaviorInterface {

@Override
public void whatToDoWhenNewAlarmIsJustInserted(Alarm alarm)
 throws Exception {

SupportedActions supportedActions = PD_Service_Action
.retrieveSupportedActions(getScenario(), alarm);

if (alarm.getCustomFieldValue(“userText”) == null) {
CustomField cf = new CustomField();
cf.setName(“userText”);
cf.setValue("myotherproblemidentifier site#sophia");
alarm.getCustomFields().getCustomField().add(cf);
 }
 }
}

Example Synchronous enrichment per problem

The example below shows the method isInformationNeededAvailable() being
overridden. The method checks if enough information is present in the alarm. In
particular it checks if the content of the field originatingManagedEntity is having
the right structure. If not, the method decides to enrich the alarm by reading an
XML file.

@Override
public boolean isInformationNeededAvailable(Alarm alarm) throws Exception {

 boolean informationAvailable = false;
 String site = null;
 if (!(alarm.getOriginatingManagedEntity().matches(
 "motorola_omcr_system .* managedelement .* bssfunction .* btssitemgr .*")) {

 EnrichmentProperties enrichmentProperties = (EnrichmentProperties)
 PD_Service_Util.retrieveBeanFromContextXml(getScenario(), ENRICHMENT_BEAN_NAME);
 if (enrichmentProperties != null) {
 synchronized (enrichmentProperties .getHashManagedObjectToSite()) {
 site = enrichmentProperties.getHashManagedObjectToSite().get(
 alarm.getOriginatingManagedEntity());
 }
 }
 }

110

 if (site != null) {
 informationAvailable = true;
 alarm.getVar().put(SITE_KEYWORD, site);
 } else {
 getLog().warn(String.format("Unable to retrieve enrichment for alarm
[%s]",alarm.getIdentifier()));
 }

return informationAvailable;
}

The example above is extracted from Problem_Power.java. This file is available in
the UCA-EBC Development Kit Problem Detection Extension in the
com.hp.uca.expert.vp.pd.problem package.

Example Asynchronous enrichment per problem

The example below shows the method isInformationNeededAvailable() being
overridden. The method controls if enough information is available, by checking
whether field “grid” is present in the alarm. If not, the method decides to enrich the
alarm by launching an asynchronous action.

public boolean isInformationNeededAvailable(Alarm alarm) throws Exception {

 boolean retValue = true;
 String gridField = alarm.getCustomFieldValue("grid");
 if (gridField == null) {
 retValue = false;
 try {
 SupportedActions supportedActions = PD_Service_Action
 .retrieveSupportedActions(alarm, this);

 Action action = new Action(supportedActions.getActionReference());

 /*
 * Really fill the command for a real Action
 */

 action.addCommand("<To be customized with the real command to execute to find the information>",
"<To be customized with the entity on which to run the command>");

 getScenario().addAction(action);

 action.setCallback(buildenrichmentCallback(getScenario(),
 alarm, action, getLog()));
 action.executeAsync(null);
 getScenario().getSession().update(action);
 }
 }
}

Example of code for an enrichment callback
public static Callback buildEnrichmentCallback(Scenario scenario,
 Alarm alarm, Action action, Logger log)
 throws NoSuchMethodException {

Class<?> partypes[] = new Class[NB_CALLBACK_ARGUMENTS];
partypes[ARGUMENT_1] = Scenario.class;
partypes[ARGUMENT_2] = Alarm.class;
partypes[ARGUMENT_3] = Action.class;
partypes[ARGUMENT_4] = Logger.class;

Object arglist[] = new Object[NB_CALLBACK_ARGUMENTS];
arglist[ARGUMENT_1] = scenario;

111

arglist[ARGUMENT_2] = alarm;
arglist[ARGUMENT_3] = action;
arglist[ARGUMENT_4] = log;
Method method = Problem_Synch_MissingInfoAlarm.class.getMethod("enrichmentCallback",
partypes);

Callback callback = new Callback(method, null, arglist);

return callback;
}

public static void enrichmentCallback(Scenario scenario, Alarm alarm,
 Action action, Logger log) {

// To be customized : BEGIN

 if (action.isTestOnly()) {
 if (log.isInfoEnabled()) {

log.info("Enrichment Action Response received, updating Alarm with result of the
Action");

 }

 alarm.setCustomFieldValue("grid", "disabled");
 }

// To be customized : END

 PD_Service_Enrichment.setAlarmIsNoMoreMissingInformation(alarm,
 Problem_Synch_MissingInfoAlarm.class.getSimpleName());

 PD_Service_Enrichment.requestAlarmComputation(scenario, alarm);

}

112

Chapter 8

Advanced features of Topology State
Propagator

Once configured (see 5.4), a TSP Value Pack runs with a standard behavior.

This default behavior is rich in the sense that, in many cases, it does not have to be
altered or extended.

However for the use cases where modification or extension is required, TSP offers
the flexibility to change the default behavior.

The default behavior is presented in section 8.1.

The ways to customize the default behavior are described in section 8.1.12.

8.1 The default behavior explained
In this section the default behavior is presented, as well as the many overridable
methods available for the value pack developer to customize it.

As Problem Detection, the Topology State Propagator Framework is a set of Java
libraries, with some Java classes that can be extended and methods overridden in
order to change the default behavior of TSP Value Packs.

Each of the following methods has a default behavior, which can be customized by
overriding the method.

The default behavior of all these methods is available by consulting the javadoc.
The implementation code of these methods is available in the example value pack
delivered as part of the TSP Dev Kit. The code of each of these methods is executed
for every propagation and can be overridden by the value pack developer.

Firstly, an example is presented in 8.1.1 and secondly the different interfaces
available.

8.1.1 Example

An example of how the workflow of the different methods triggered in the case of
an alarm Operator State Update is shown in the sequence diagram in Figure 26,
where an alarm termination is managed for the following context: alarm 1 is root
cause alarm in propagation group1 of Propagation1 and in propagation group2 of
Propagation2 and has no role for any of Propagation3’s groups.

113

Figure 26 Alarm termination sequence diagram example

Let’s consider for our example the simple topology from Figure 27 where Prop1
and Prop2 have no connection between each other and Prop3 can be impacted by
Prop2 and vice versa, where Prop3 is a finer grain propagation then Prop2.

Figure 27 Topology of the example

Let’s say that at before the alarm1 termination is received, the propagation groups
are as shown in Figure 28 TSP: Alarm termination example: TSP group updates
Step1.

114

Figure 28 TSP: Alarm termination example: TSP group updates Step1

The alarm1 termination is received and, according to the sequence diagram in
Figure 26, a number of methods will be called by the TSP framework. If we assume
that alarm1 has a role in the computation of all states in all groups, it will result in
their status change. We can also assume that alarm1 no impact in service Alarms
computation. Then the propagation groups could look like represented in Figure 29
TSP: Alarm termination example: TSP group updates Step2.

Figure 29 TSP: Alarm termination example: TSP group updates Step2

115

8.1.2 Event Role Check

8.1.3 State Creation

Method used to check if all the criteria are met to create the State:

8.1.4 Service Alarm Creation and Clearance

Method used to check if all the criteria are met to create the Service alarm:

8.1.5 Common Entity Check

Methods used to calculate Information for optimizations

8.1.6 PropagationGroup update

Methods used to manage the propagation group lifecycle, and its associated
alarms and states.

116

117

8.1.7 Network State Update

118

8.1.8 Operator State Update

Methods used to manage the lifecycle of a

 ServiceAlarm

 SubAlarm

 RootCauseAlarm

And its consequence

119

120

8.1.9 Alarm Attribute Update

Methods used to manage the Severity or an Attribute Update of

 ServiceAlarm

 RootCause Alarm

 SubAlarm

, and its consequence

121

8.1.10 Periodic Check and General Behavior

122

8.1.11 Alarm eligibility update

123

8.1.12 State eligibility update

8.1.13 TroubleTicket update

Methods used to manage the Trouble Ticket lifecycle when related to a
ServiceAlarm or a SubAlarm, and its consequence

124

8.2 How to customize default behavior

 A TSP VP delivered as an example with the IM SDK is described in Annex E.

8.2.1 Java customization

The way to customize the default behavior of Topology State Propagator Value
Packs is to override some of the Java methods listed in section 8.1. There are three
levels of customization:

 Per propagation (this section)

 For a set or for all propagations (section 8.2.2)

 For non-propagation specific matters (section 8.2.3)

The methods that can be overridden to customize the “propagation specific”
behavior of a Topology State Propagator Value Pack are all listed in the
PropagationInterface java interface.

The methods that can be overridden to customize the “non-propagation specific”
behavior of a Topology State Propagator Value Pack are all listed in the
GeneralBehaviorInterface java interface.

Figure 30 - One propagation specific customization

PropagationDefault.java is the class implementing the methods of the
ProblemInterface. It defines the default behavior of Topology State Propagator
Value Packs.

The way to override a method of the PropagationInterface is to create a
customization class per propagation, which extends PropagationDefault as seen in
Figure 30.

Below is the “MyPropagation.java” class created by the Eclipse plug-in. It is
located in src/main/java/[com.hp.uca.expert.vp.tp.core]

/**
 * This Propagation is empty and ready to define methods to customize the
PropagationDefault
 */
package com.hp.uca.expert.vp.tp.core;

import org.slf4j.LoggerFactory;

import com.hp.uca.expert.vp.tp.core.PropagationDefault;

125

import com.hp.uca.expert.vp.tp.interfaces.PropagationInterface;

public class MyPropagation extends PropagationDefault implements
PropagationInterface {

 public MyPropagation() {
 super(LoggerFactory.getLogger(MyPropagation.class));
 }

}

Note that the name of the class, in the above example MyPropagation, must be
changed to the name of the propagation for which we want to customize the
behavior.

The following equation must be true

Name of the customization class for propagation X = name of propagation X
as defined in TopologyPropagation_filters.xml file.

For example, if the extract of TopologyPropagation_filters.xml is like

this:
<topFilter name="Propagation_PhoneService">

Then the class Propagation_PhoneService.java must be declared in the

following way must look like this:
public final class Propagation_PhoneService extends
PropagationDefault implements PropagationInterface {

Below is the same file renamed as MyFirstPropagation.java, which overrides both
the calculateAlarmOperatorNote() and

calculateAlarmOtherAttribute() methods.
/**
 * The Class MyFirstPropagation extends PropagationDefault and overrides
 * {@link #calculateAlarmOperatorNote(GroupBase, Event)}
 * {@link #calculateAlarmOtherAttribute(GroupBase, Action, Event)}
 */
public class MyFistPropagation extends PropagationDefault implements
 PropagationInterface {

/**
 *
 */
public MyPropagation() {

 super(LoggerFactory.getLogger(MyPropagation.class));
 setPublishAttributeForDebug(true);
}
/*
 * (non-Javadoc)
 *
 * @see
 * com.hp.uca.expert.vp.tp.core.PropagationDefault#calculateAlarmOperatorNote
 * (com.hp.uca.expert.group.GroupBase, com.hp.uca.expert.event.Event)
 */
@Override
public String calculateAlarmOperatorNote(GroupBase group,
Event referenceEvent) throws Exception {

126

if (log.isTraceEnabled()) {

 LogHelper.enter(log, "calculateAlarmOperatorNote()",
group.getName());
}
StringBuilder buf = new StringBuilder();
boolean first = true;
Set<Alarm> wholeST = ((PropagationGroup) group).getWholeSubTreeRootCauses();

if (wholeST != null && !wholeST.isEmpty()) {

 for (Alarm s : wholeST) {
 if (!first) {
 buf.append(" | ");

 first = false;
 }
 buf.append(s.getIdentifier());
 }
}
String ret = buf.toString();
if (log.isTraceEnabled()) {
 LogHelper.exit(log, "calculateAlarmOperatorNote()", ret);
}
return ret;

}

/*
 * (non-Javadoc)
 *
 * @see
 *com.hp.uca.expert.vp.tp.core.PropagationDefault#calculateAlarmOtherAttribute
 * (com.hp.uca.expert.group.GroupBase,
 * com.hp.uca.mediation.action.client.Action, com.hp.uca.expert.event.Event)
 */
@Override
public void calculateAlarmOtherAttribute(GroupBase group, Action action,
Event referenceEvent) throws Exception {

if (log.isTraceEnabled()) {
LogHelper.method(log, "calculateAlarmOtherAttribute()",
group.getName());
}
Map<String, String> otherAttributes = new HashMap<String, String>();
otherAttributes.put("ucaCustomField5",
String.format("dbNodeId:<%s>",
((PropagationGroup) group).getDbId()));
action.getVar().put("otherAttributes", otherAttributes); }

The Topology State Propagator framework will automatically invoke the methods
whatToDoWhenXXX(…) listed in section 8.1, at precise times of the lifecycle of
every alarm (and depending on propagation context).

For instance, when an alarm ‘alarm1’ is a root cause in ‘propagationGroup1’ and is
cleared, the TopologyStatePropagator framework will invoke the method
whatToDoWhenRootCauseAlarmIsCleared (alarm1, propagationGroup1)

If ‘alarm1’ belongs to only one propagation “Propagation A”, then the Topology
State Propagator framework will invoke the method
whatToDoWhenRootCauseAlarmIsCleared (alarm1…) present in the customization
class of “PropagationA1” . If the method whatToDoWhenRootCauseAlarmIsCleared
() has not been overridden for “PropagationA1”, the default method is invoked.

127

But if ‘alarm1’ also belongs to “Propagation B”, and is a root cause alarm for
PropagationB as well, the Problem Detection framework will also invoke the
method whatToDoWhenRootCauseAlarmIsCleared (alarm1 …), if present in the
customization class of “Propagation B”, or the default method otherwise.

Depending of the position of the alarm in its lifecycle at a given time, the Topology
State Propagator framework will decide exactly which exact method(s)
whatToDoWhenXXX(..) to invoke.

8.2.2 My PropagationDefault

As in the case of extending ProblemDefault for problems (seen in 7.4.3 My
ProblemDefault), PropagationDefault class can also be extended. The benefit of
extending PropagationDefault class is to modify the default behavior for all
propagations or for a set of propagations.

Figure 31 - MyPropagationDefault: a customization for a group of propagations

In Figure 31 MyPropagationDefault.java implements some or all of the methods of
PropagationInterface. Each propagation customization class that extends
MyPropagationDefault.java will benefit from the implementation of those
methods. In the diagram, by default, PropagationA1, PropagationA2 and
PropagationA3 (both hidden behind PropagationA1) will use the methods
implemented in MyPropagationDefault.java. This happens only because the
different propagation java classes PropagationA1 to A3 explicitly extended in their
java code the MyPropagationDefault. PropagationB will use the methods
implemented in PropagationDefault.java, unless these methods are overridden in
PropagationB.java.

128

For a comprehensive diagram showing the advanced possibilities and subtleties of
extending PropagationDefault.java, refer to Annex F

Propagations initialization

Propagations are initialized from the PropagationXmlConfig.xml defined inside the
<propagationPolicy> tag in the following way: all the policies defined in the

PropagationDefault propagation policy (can be MyPropagationDefault) are applied
to all the other Propagations, if not overwritten by their respective custom
propagation policy. Furthermore, for the policies seen in Table 24 – TSP customized
“per-propagation” configuration: Strings, Longs, Booleans (which contain a
sequence of String, Long and Boolean types) defined in the PropagationDefault are
valid for all the other Propagations, so even if defined in a custom
propagationPolicy they are added to the ones defined in the sequence, and not
overwritten. This applies also for topology policies: Nodes, PoiCategories and
Threshold values seen in 5.4.2.2. Therefore, as for Problems, if wanting specific
behavior for each of the Propagations, it is better to empty the PropagationDefault
configuration and defined it in each of the custom propagation policies. On the
other hand, it is a good tip to identify what is common to all propagations and
define it only once in the PropagationDefault configuration.

PropagationDefault (can be MyPropagationDefault) configuration is used to
completely initialize a propagation whose policy is not defined in the
PropagationXmlConfig.xml, but as a top filter in a <topFilter> tag of

TopologyPropagation_filters.xml file. Also, if no PropagationDefault policy tag is
defined in the PropagationXmlConfig.xml file, then the default values are applied
as given in the PropagationDefault.java class.

In the following example of configuration the PropagationDefault policies will
therefore apply for all the other propagations defined, like for example by default
the enableServicealarmCreation is set to false (for Propagation_Switch and
Propagation_Server), but is set to true when overwritten (in
Propagation_PhoneService). The String “dummy” will apply for all propagations,
but each of the propagation adds its own strings to this list. The node dbType
location and the poi Location and RC will be found in all propagations, but for
example the node dbType callServer and phonePool are added to this list for
Propagation_PhoneService, as well as the poiCategory Service. The
propagationRule is WorstChildPercentage for all propagations. The threshold
values are set as in PropagationDefault for all propagations except for
Propagation_Switch.

…
<propagationPolicy name="PropagationDefault">
 <serviceAlarm>
 <enableServiceAlarmCreation>false</enableServiceAlarmCreation>
 <delayForServiceAlarmCreation>0</delayForServiceAlarmCreation>
 <attachWholeSubTreeRootCauses>true</attachWholeSubTreeRootCauses>
 </serviceAlarm>
 <groupTickFlagAware>false</groupTickFlagAware>
 <propagationRule>
 <rule>WorstChildPercentage</rule>
 </propagationRule>
 <nodes>
 <dbType>
 <key><![CDATA[location]]></key>
 </dbType>
 </nodes>
 <poiCategories>
 <poiCategory>
 <key><![CDATA[LOCATION]]></key>
 </poiCategory>
 <poiCategory>
 <key><![CDATA[RC]]></key>
 </poiCategory>

129

 </poiCategories>
 <thresholdValues>
 <OK name="OK">
 <perceivedSeverity>CLEAR</perceivedSeverity>
 <availabilityPercentage>100.0</availabilityPercentage>
 <poiImportance>None</poiImportance>
 </OK>
 <LOW name="LOW">
 <perceivedSeverity>WARNING</perceivedSeverity>
 <availabilityPercentage>99.99999999</availabilityPercentage>
 <poiImportance>Low</poiImportance>
 </LOW>
 <MEDIUM name="MED">
 <perceivedSeverity>MINOR</perceivedSeverity>
 <availabilityPercentage>75.0</availabilityPercentage>
 <poiImportance>Medium</poiImportance>
 </MEDIUM>
 <HIGH name="HIGH">
 <perceivedSeverity>MAJOR</perceivedSeverity>
 <availabilityPercentage>50.0</availabilityPercentage>
 <poiImportance>High</poiImportance>
 </HIGH>
 <CRITICAL name="CRITICAL">
 <perceivedSeverity>CRITICAL</perceivedSeverity>
 <availabilityPercentage>25.0</availabilityPercentage>
 <poiImportance>Critical</poiImportance>
 </CRITICAL>
 <DOWN name="DOWN">
 <perceivedSeverity>CRITICAL</perceivedSeverity>
 <availabilityPercentage>0.0</availabilityPercentage>
 <poiImportance>Critical</poiImportance>
 </DOWN>
 </thresholdValues>
 <booleans />
 <strings>
 <p1:string key="dummy">
 <p1:value><![CDATA[ffff]]></p1:value>
 </p1:string>
 </strings>
 <longs />
</propagationPolicy>
…
<propagationPolicy name="Propagation_Server">
 <serviceAlarm></serviceAlarm>
 <groupTickFlagAware>false</groupTickFlagAware>
 <propagationRule>
 <rule>WorstChildPercentage</rule>
 </propagationRule>
<nodes>
<dbType>
 <key><![CDATA[switch]]></key>
 </dbType>
 </nodes>
 <booleans />
 <strings>
 <p1:string key="propagationObject">
 <p1:value><![CDATA[Server]]></p1:value>
 </p1:string>
 <p1:string key="statusName">
 <p1:value><![CDATA[state]]></p1:value>
 </p1:string>
 <p1:string key="percentageAvailabilityKey">
 <p1:value><![CDATA[percAvailability]]></p1:value>
 </p1:string>
 </strings>
 <longs />
</propagationPolicy>

<propagationPolicy name="Propagation_PhoneService">
 <serviceAlarm>
 <enableServiceAlarmCreation>true</enableServiceAlarmCreation>
 </serviceAlarm>
 <groupTickFlagAware>false</groupTickFlagAware>
 <propagationRule></propagationRule>

130

<nodes>
 <dbType>
 <key><![CDATA[phonePool]]></key>
 </dbType>
 <dbType>
 <key><![CDATA[callServer]]></key>
 </dbType>
 </nodes>
 <poiCategories>
 <poiCategory>
 <key><![CDATA[SERVICE]]></key>
 </poiCategory>
 </poiCategories>
 <booleans />
 <strings>
 <p1:string key="propagationObject">
 <p1:value><![CDATA[PhoneService]]></p1:value>
 </p1:string>
 <p1:string key="statusName">
 <p1:value><![CDATA[state]]></p1:value>
 </p1:string>
 <p1:string key="percentageAvailabilityKey">
 <p1:value><![CDATA[percAvailability]]></p1:value>
 </p1:string>
 </strings>
 <longs />
 </propagationPolicy>

<propagationPolicy name="Propagation_Switch">
 <serviceAlarm></serviceAlarm>
 <groupTickFlagAware>false</groupTickFlagAware>
 <propagationRule>
 <rule>WorstChildPercentage</rule>
 </propagationRule>
<nodes>
<dbType>
<key><![CDATA[switch]]></key>
</dbType>
</nodes>
<poiCategories>
<poiCategory>
<key><![CDATA[SERVICE]]></key>
</poiCategory>
</poiCategories>
<thresholdValues>
<OK name="Normal">
<perceivedSeverity>CLEAR</perceivedSeverity>
<availabilityPercentage>100.0</availabilityPercentage>
<poiImportance>None</poiImportance>
</OK>
 <LOW name="LowDegraded">
 <perceivedSeverity>WARNING</perceivedSeverity>
 <availabilityPercentage>99.99999999</availabilityPercentage>
 <poiImportance>Low</poiImportance>
 </LOW>
 <MEDIUM name="MedDegraded">
 <perceivedSeverity>MINOR</perceivedSeverity>
 <availabilityPercentage>75.0</availabilityPercentage>
 <poiImportance>Medium</poiImportance>
 </MEDIUM>
 <HIGH name="HighDegraded">
 <perceivedSeverity>MAJOR</perceivedSeverity>
 <availabilityPercentage>50.0</availabilityPercentage>
 <poiImportance>High</poiImportance>
 </HIGH>
 <CRITICAL name="CriticallyDegraded">
 <perceivedSeverity>CRITICAL</perceivedSeverity>
 <availabilityPercentage>25.0</availabilityPercentage>
 <poiImportance>Critical</poiImportance>
 </CRITICAL>
 <DOWN name="Down">
 <perceivedSeverity>CRITICAL</perceivedSeverity>
 <availabilityPercentage>0.0</availabilityPercentage>
 <poiImportance>Critical</poiImportance>

131

 </DOWN>
 </thresholdValues>
 <booleans />
 <strings>
 <p1:string key="propagationObject">
 <p1:value><![CDATA[Switch]]></p1:value>
 </p1:string>
 <p1:string key="statusName">
 <p1:value><![CDATA[state]]></p1:value>
 </p1:string>
 <p1:string key="percentageAvailabilityKey">
 <p1:value><![CDATA[percAvailability]]></p1:value>
 </p1:string>
 </strings>
 <longs />
</propagationPolicy>
…

8.2.3 MyGeneralBehavior

As explained for problems general behavior in 7.4.5, the same reasoning applies
for propagations. The methods that can be overridden to customize the “non-
propagation specific” behavior of a Topology State Propagator Value Pack are all
listed in the GeneralBehaviorInterface Java interface.

A “non-propagation-specific” behavior is a behavior that is not related to any
propagation in particular.

For example, the behavior of the initialization of a Topology State Propagator
Value Pack is a “non-propagation-specific” behavior.

The way to customize a “non-propagation-specific” behavior is presented in the
following steps:

 Create a MyGeneralBehavior.java (name can be different) Java class in the
following directory:
src/main/java/[com.hp.uca.expert.vp.tp.core].

 Ensure that the value of the property generalBehaviorClassName in the
file context.xml in src/main/resources/valuepack/conf/

folder matches MyGeneralBehavior , as shown in Figure 32 – TSP
MyGeneralBehavior name matching

 Override the methods of the GeneralBehaviorInterface for which the
behavior has to be customized.

132

Figure 32 – TSP MyGeneralBehavior name matching

Below is an example of a MyGeneralBehavior.java class that overrides one method
of the interface GeneralBehaviorInterface: computeSourceUniqueId().

public class MyGeneralBehavior extends GeneralBehaviorDefault implements
GeneralBehaviorInterface {

/**
 * Instantiates a new my general behavior.
 */
public MyGeneralBehavior() {
 super(LoggerFactory.getLogger(MyGeneralBehavior.class));
}

/*
 * (non-Javadoc)
 *
 * @see
 * com.hp.uca.expert.vp.tp.core.GeneralBehaviorDefault#computeSourceUniqueId
 * (com.hp.uca.expert.event.Event)
 */
@Override
public String computeSourceUniqueId(Event event) throws Exception {
 String ret = super.computeSourceUniqueId(event);
 return ret == null ? ret : ret.toUpperCase();
}}

133

Chapter 9

Troubleshooting

9.1 Logging
Like for any UCA for EBC Value Pack, the logging configuration for a Inference
Machine Value Pack has to be done in the file
${UCA_EBC_INSTANCE}/conf/uca-ebc-log4j.xml

on the UCA for EBC server.

The list of specific IM loggers is given below:

Logger Description

com.hp.uca.expert.vp.common.actio
ns.db

Controls the executions of DB requests

com.hp.uca.expert.vp.common.actio
ns.temip

Controls the executions of actions (and
TroubleTicket actions) to TeMIP

com.hp.uca.expert.vp.common.actio
ns.GroupingKeys

Controls the execution of grouping keys
computation

com.hp.uca.expert.vp.common.lifec
ycle

Controls Inference Machine Internals

com.hp.uca.expert.vp.common.servi
ces

Controls Inference Machine Services

Problem Detection specific loggers:

Logger Description

com.hp.uca.expert.vp.pd.config.Pro
blemProperties

Controls the extraction of values from the XML
configuration files

com.hp.uca.expert.vp.pd.core.XmlPr
oblem

Controls the parsing of the XML of the XmlProblem
customization

com.hp.uca.expert.vp.pd.core.Probl
emDefault

Controls the execution of the default
implementation of Problem Detection behavior

com.hp.uca.expert.vp.pd.core.intern
al.PD_AlarmRecognition

Controls the decoding and setting of the roles of
alarms

com.hp.uca.expert.vp.pd.core.
internal.PD_Lifecycle

Controls the states propagation methods

com.hp.uca.expert.vp.pd.core.
internal.PD_TroubleTicket

Controls the emission of Trouble Ticket requests

134

Logger Description

com.hp.uca.expert.vp.pd.core.
internal.PD_Navigation

Controls the requests for updates on alarms

com.hp.uca.expert.vp.pd.core.
internal.PD_Process

Controls the execution of operations of PD at a
high level,(attaching a subalarm to a group,
creating a Trouble Ticket, …)

com.hp.uca.expert.vp.pd.core.
internal.ProblemDetection

Controls the execution of operations of PD at the
highest level: the methods invoked directly from
the rules

com.hp.uca.expert.vp.pd.problem
Controls the customization of classes

com.hp.uca.expert.vp.pd.im.lifecycle
Controls Problem Detection Internals

com.hp.uca.expert.vp.pd.services.P
D_Service_Lifecycle

Controls Problem Detection Services for Lifecycle

com.hp.uca.expert.vp.pd.services.P
D_Service_ProblemAlarm

Controls Problem Detection Services for
ProblemAlarm

com.hp.uca.expert.vp.pd.services.P
D_Service_Util

Controls Problem Detection Miscellaneous
Services

com.hp.uca.expert.vp.pd.services.P
D_Service_Navigation

Controls Problem Detection Services for
Navigation

com.hp.uca.expert.vp.pd.services.P
D_Service_Action

Controls Problem Detection Services for Actions

com.hp.uca.expert.vp.pd.services.P
D_Service_TroubleTicket

Controls Problem Detection Services for Trouble
Tickets

Topology State Propagator specific loggers:

Logger Description

com.hp.uca.expert.vp.tp.config.Prop
agationProperties

Controls the extraction of values from the XML
configuration files

com.hp.uca.expert.vp.tp.core.Propa
gationDefault

Controls the execution of the default
implementation of Propagation behavior

com.hp.uca.expert.vp.tp.core.intern
al.TP_EventRecognition

Controls the decoding and setting of the roles of
events

com.hp.uca.expert.vp.tp.core.
internal.TP_Lifecycle

Controls the states propagation methods

com.hp.uca.expert.vp.tp.core.
internal.TP_TroubleTicket

Controls the emission of Trouble Ticket requests

com.hp.uca.expert.vp.tp.core.
internal.TP_Navigation

Controls the requests for updates on alarms and
events

com.hp.uca.expert.vp.tp.core.
internal.TP_Process

Controls the execution of operations of TSP at a
high level,(attaching a subalarm to a group,
creating a Trouble Ticket, …)

com.hp.uca.expert.vp.tp.core.
internal.TopologyPropagation

Controls the execution of operations of TSP at the
highest level: the methods invoked directly from
the rules

135

Logger Description

com.hp.uca.expert.vp.tp.propagatio
n

Controls the customization of classes

com.hp.uca.expert.vp.tp.im.lifecycle
Controls TSP Internals Lifecycle

com.hp.uca.expert.vp.tp.services.TP
_Service_Lifecycle

Controls TSP Services for Lifecycle

com.hp.uca.expert.vp.tp.services.TP
_Service_ServiceAlarm

Controls TSP Services for ServiceAlarm

com.hp.uca.expert.vp.tp.services.TP
_Service_Util

Controls TSP Miscellaneous Services

com.hp.uca.expert.vp.tp.services.TP
_Service_Navigation

Controls TSP Services for Navigation

com.hp.uca.expert.vp.tp.services.TP
_Service_Action

Controls TSP Services for Actions

com.hp.uca.expert.vp.tp.services.TP
_Service_TroubleTicket

Controls TSP Services for Trouble Tickets

com.hp.uca.expert.vp.tp.services.TP
_Service_Group

Controls TSP Services for Grouping

com.hp.uca.expert.vp.tp.services.TP
_Service_PointOfInterest

Controls TSP Services for Point Of Interest

In addition to these Inference Machine (PD, TSP and common library) loggers, it can
be very useful to log with the following UCA-EBC logger

logger name="com.hp.uca.expert.filter" with level

DEBUG to trace why an alarm does not pass
TRACE to trace why an alarm passes

136

Chapter 10

Annexes

137

Annex A.

Migration steps from V3.1 to V3.2
PD 3.2 is now part of the Inference Machine, which embeds PD and TSP products. As PB and TSP have
the exact same needs to execute actions on NMS (create alarm, clear alarm, group alarms, etc.), it
has been decided to use a common ActionsFactory for this.

This common ActionsFactory is now part of a common library, which is delivering its own namespace.

As this namespace is different, the compatibility is broken but in counterpart, it brings some
improvements:

 the logic of actions is separated from PD and TSP

 as such, it is reusable easily (same ActionsFactory can be used across PD and TSP)

 easier to understand at the end

Deprecated APIs
All methods/classes/packages below are deprecated with this version and will be removed
in next major update.

This is mainly due to the fact that most of the methods are now coming within uca-evp-
common.jar that is used also by another toolkit (aka Topology State Propagator for Service
Impact).

Type API Deprecated by

Package com.hp.uca.expert.vp.pd.core.exception com.hp.uca.expert.vp.common.exceptions

Method ProblemDefault.computeDelayForTroubleTi
cketCreation(Alarm alarm)

ProblemDefault.computeDelayForTroubleTick
etCreation(Event event)

Method ProblemDefault.computeDelayForProblemA
larmCreation(Alarm alarm)

ProblemDefault.computeDelayForProblemAlar
mCreation(Event event)

Method ProblemDefault.computeDelayForProblemA
larmClearance(Alarm alarm)

ProblemDefault.computeDelayForProblemAlar
mClearance(Event event)

Method ProblemDefault.computeTimeWindow(Alar
m alarm)

ProblemDefault.computeTimeWindow(Event
event)

Method PD_Service_Enrichment.setAlarmIsMissingIn
formation(Alarm a, String problemName)

PD_Service_Enrichment.setEventIsMissingInfo
rmation(Event e, String problemName)

Method PD_Service_Enrichment.setAlarmIsNoMore
MissingInformation(Alarm a, String
problemName)

PD_Service_Enrichment.setEventIsNoMoreMis
singInformation(Event e, String problemName)

Method PD_Service_Enrichment.isAlarmMissingInfor
mation(Alarm a, String problemName)

PD_Service_Enrichment.isEventMissingInform
ation(Event e, String problemName)

Method PD_Service_Enrichment.requestAlarmComp
utation(Scenario scenario, Alarm a)

PD_Service_Enrichment.requestEventComputa
tion(Scenario scenario, Event e)

Method PD_Service_Group.calculateLeadGroup(Coll
ectionGroup groups)

PD_Service_Group.calculateLeadGroup(Collect
ion<Group> groups, boolean sorted)

Method PD_Service_Group.isLeadGroup(Group
potentialLeaderGroup, CollectionGroup
groups)

PD_Service_Group.isLeadGroup(Group
potentialLeaderGroup, Collection<Group>
groups, boolean sorted)

138

Type API Deprecated by

Method PD_Service_Lifecycle.cloneAlarmToBeReEva
luated(Alarm alarm)

PD_Service_Lifecycle.cloneEventToBeReEvalu
ated(Event event)

Method PD_Service_Util.extractSubString() com.hp.uca.expert.vp.common.services.UtilSe
rvice.extractSubString()

Method PD_Service_Util.retrieveBeanFromContextX
ml()

com.hp.uca.expert.vp.common.services.UtilSe
rvice.retrieveBeanFromContextXml()

Method PD_Service_Util.fileFromResourceName() com.hp.uca.expert.vp.common.services.UtilSe
rvice.fileFromResourceName()

Method PD_Service_Util.storeProblemInfosInAlarmL
ocalVariable(ProblemContext
problemContext, Alarm alarm,
ListProblemInfo problemInfos)

PD_Service_Util.storeProblemInfosInEventLoc
alVariable(ProblemContext problemContext,
Event event, List<ProblemInfo> problemInfos)

Method PD_Service_Util.retrieveProblemInfosFromA
larmLocalVariable(ProblemContext
problemContext, Alarm alarm)

PD_Service_Util.retrieveProblemInfosFromEve
ntLocalVariable(ProblemContext
problemContext, Event event)

Class TestUtils com.hp.uca.expert.vp.common.testmaterial.T
estUtils

How do I migrate my PD VP 3.0/3.1 to 3.2?
Problem Detection 3.2 does not provide any automatic migration tool for your Java files.
However, the SDK provides an XLST (eXtensible Stylesheet Language Transformation) file
that you can use to migrate your PD configuration file.

In your Java code

 Removed classes

Following imports will generate compilation errors because the classes do not exist anymore

Class (in V3.1) Should be replaced in V3.2 by

import com.hp.uca.expert.vp.pd.config.Action import com.hp.uca.expert.vp.im.config.Action

import com.hp.uca.expert.vp.pd.config.Actions import com.hp.uca.expert.vp.im.config.Actions

import com.hp.uca.expert.vp.pd.config.BooleanItem import
com.hp.uca.expert.vp.im.config.BooleanItem

import com.hp.uca.expert.vp.pd.config.Booleans import com.hp.uca.expert.vp.im.config.Booleans

import com.hp.uca.expert.vp.pd.config.LongItem import com.hp.uca.expert.vp.im.config.LongItem

import com.hp.uca.expert.vp.pd.config.Longs; import com.hp.uca.expert.vp.im.config.Longs

import com.hp.uca.expert.vp.pd.config.StringItem; import com.hp.uca.expert.vp.im.config.StringItem

import com.hp.uca.expert.vp.pd.config.Strings import com.hp.uca.expert.vp.im.config.Strings

139

Class (in V3.1) Should be replaced in V3.2 by

import
com.hp.uca.expert.vp.pd.config.TroubleTicketActio
n

import
com.hp.uca.expert.vp.im.config.TroubleTicketAct
ion

import
com.hp.uca.expert.vp.pd.config.TroubleTicketAction
s

import
com.hp.uca.expert.vp.im.config.TroubleTicketAct
ions

import
com.hp.uca.expert.vp.pd.core.exception.InvalidSupp
ortedActions

import
com.hp.uca.expert.vp.common.exceptions.Invalid
SupportedActions

import
com.hp.uca.expert.vp.pd.core.exception.InvalidSupp
ortedTroubleTicketActions

import
com.hp.uca.expert.vp.common.exceptions.Invalid
SupportedTroubleTicketActions

import
com.hp.uca.expert.vp.pd.interfaces.ActionsFactories
Selection

import
com.hp.uca.expert.vp.common.interfaces.Actions
FactoriesSelection

import
com.hp.uca.expert.vp.pd.interfaces.SupportedAction
s

import
com.hp.uca.expert.vp.common.interfaces.Support
edActions

Import
com.hp.uca.expert.vp.pd.interfaces.SupportedTroubl
eTicketActions

import
com.hp.uca.expert.vp.common.interfaces.Support
edTroubleTicketActions

 What needs to be changed in your customized ProblemDefault

If you are overriding the following methods from ProblemDefault, they need to be changed because
they do not exist anymore:

Method (in V3.1) Should be replaced in V3.2 by

chooseSupportedActions(Alarm alarm,
ProblemInterface problem)

chooseSupportedActions(Event event,
CommonActionInterface problemOrPropagation)

chooseSupportedTroubleTicketActions(Alarm alarm,
ProblemInterface problem)

chooseSupportedTroubleTicketActions(Event
event,
CommonActionInterface problemOrPropagation)

 What needs to be changed in your customized ActionsFactory

If you are overriding the following methods from ActionsFactory, they need to be changed because
they do not exist anymore:

Method (in V3.1) Should be replaced in V3.2 by

createProblemAlarm(Action action, Scenario
scenario,
Group group, ProblemInterface problem, Alarm
referenceAlarm)

createAlarm(Action action, Scenario scenario,
GroupBase group, CommonActionInterface
problemOrPropagation, Event referenceEvent)

terminateAlarm(Action action, Scenario scenario,
Alarm alarm, ProblemInterface problem)

terminateAlarm(Action action, Scenario
scenario, Alarm alarm, CommonActionInterface
problemOrPropagation)

clearAlarm(Action action, Scenario scenario, Alarm
alarm, ProblemInterface problem)

clearAlarm(Action action, Scenario scenario,
Alarm alarm, CommonActionInterface
problemOrPropagation)

acknowledgeAlarm(Action action, Scenario scenario,
Alarm alarm, ProblemInterface problem)

acknowledgeAlarm(Action action, Scenario
scenario, Alarm alarm, CommonActionInterface
problemOrPropagation)

unacknowledgeAlarm(Action action, Scenario
scenario, Alarm alarm, ProblemInterface problem)

unacknowledgeAlarm(Action action, Scenario
scenario, Alarm alarm, CommonActionInterface
problemOrPropagation)

140

Method (in V3.1) Should be replaced in V3.2 by

associateAlarmsForHistoryNavigation(Action action,
Scenario scenario, Group group, Collection Alarm
children, ProblemInterface problem)

associateAlarmsForHistoryNavigation(Action
action, Scenario scenario, GroupBase group,
Collection Alarm children, CommonActionInterface
problemOrPropagation)

dissociateAlarmsForHistoryNavigation(Action action,
Scenario scenario, Group group, Collection Alarm
children, ProblemInterface problem)

dissociateAlarmsForHistoryNavigation(Action
action, Scenario scenario, GroupBase group,
Collection Alarm children, CommonActionInterface
problemOrPropagation)

setHistoryNavigation(Action action, Scenario
scenario,
Alarm alarm, Qualifier qualifier)

setHistoryNavigation(Action action, Scenario
scenario,
Alarm alarm, QualifierInterface qualifier)

setGenericAttribute(Action action, Scenario scenario,
Alarm alarm, Command command)

setGenericAttribute(Action action, Scenario
scenario,
Alarm alarm, Command command)

 What needs to be changed in your customized
TroubleTicketActionsFactory

If you are overriding the following methods from TroubleTicketActionsFactory, they need to be
changed because they do not exist anymore:

Method (in V3.1) Should be replaced in V3.2 by

createTroubleTicket(Action action, Scenario scenario,
Group group, ProblemInterface problem, Alarm
referenceAlarm, List Alarm alarmsToAssociate)

createTroubleTicket(Action action, Scenario
scenario, GroupBase group,
CommonActionInterface
problemOrPropagation, Alarm referenceAlarm,
List
Alarm alarmsToAssociate)

closeTroubleTicket(Action action, Scenario
scenario, ProblemInterface problem, String
troubleTicketIdentifer)

closeTroubleTicket(Action action, Scenario
scenario,
CommonActionInterface problemOrPropagation,
String troubleTicketIdentifer)

associateTroubleTicket(Action action, Scenario
scenario, Group group, ProblemInterface
problem, List Alarm alarmsToAssociate, String
troubleTicketIdentifer)

associateTroubleTicket(Action action, Scenario
scenario, GroupBase group,
CommonActionInterface
problemOrPropagation, List Alarm
alarmsToAssociate,
String troubleTicketIdentifer)

dissociateTroubleTicket(Action action, Scenario
scenario, Group group, ProblemInterface
problem, List Alarm alarmsToDissociate, String
troubleTicketIdentifer)

dissociateTroubleTicket(Action action,
Scenario scenario, GroupBase group,
CommonActionInterface problemOrPropagation,
List Alarm alarmsToDissociate, String
troubleTicketIdentifer)

In your XML configuration

Your ProblemXMLConfig.xml file (or equivalent) needs to be modified to make use of the new
namespace "http://config.im.vp.expert.uca.hp.com/" for certain elements of the file like:

• actions
• troubleTicketActions
• booleans
• longs
• strings

You can use the ProblemXmlConfig-Migration-to-V32.xslt file part of the Inference Machine SDK to
transform your current ProblemXmlConfig.xml version 3.1 to version 3.2.

Within Eclipse, you can proceed as per following steps:

141

1. Select your ProblemXmlConfig.xml
2. Right-click and choose Run As -> XSL Transformation
3. Input File should be added by clicking Add External Files
4. Select the xslt file provided under ${UCA_EBC_DEV_HOME}/schemas

5. Click OK

If you have errors like ‘Namespace for prefix 'p1' has not been declared’, it’s probably
because you’re not using the right processor to transform your XML. In that case:

1. Choose Run configurations
2. Choose the last run
3. Click on Processor tab
4. Use specific processor : Xalan or Saxon (depending on your settings)
5. Click Run

142

Annex B.

PD Value Pack example

As part of the Inference Machine Development Kit, an example Value Pack project,
named ‘pd-example’, is available.

If deployed, the pd-example Value Pack will be able to recognize four problems:

 Problem_BitError

 Problem_Synch

 Problem_Power

 XmlGeneric_Synch

Each of these four problems have specific filters.

Problem_BitError, Problem_Synch and Problem_Power are problems extending the
ProblemDefault java class, by overriding some of its methods. XmlGeneric_Synch is
also an extended problem, but customized through XML.

Examples of Alarm enrichment, Action Factory and Trouble Ticket Action Factory
are also given. Also, sample tests file that can be run with JUnit are contained.
Those tests simulate the deployed behavior of the pd-example Value Pack without
having to actually deploy it. Alarms are injected in the Value Pack as though they
came from the network.

143

pd-example, content of src/main/java

Table 27 - src/main/java: the customization code for the example Value Pack

Package com.acme.enrichment

This package contains classes used to read an XML file called Enrichment.xml
present in src/main/resources/valuepack/conf.
Enrichment.xml contains information to enrich alarms. It is a kind of table
where if you know the managedObject of an alarm, then you can find the
associated site.

Extract of Enrichment.xml
<managedObjectToSite>

 <managedObject>motorola_omcr_system […] 5 btssitemgr 0 msi 18 mms
0</managedObject>
 <site>bsc khorfakkan_bsc24 bts bridippm_6185</site>

</managedObjectToSite>

The file MissingInfoAlarmPowerTest.java present in
src/test/java/ft/enrichment is the test file sending alarms belonging to
problem ‘Problem_Power’ and that need to be enriched with site information

EnrichmentProperties.java is the class that contains method to read the
Enrichment.xml file.

EnrichmentPropertiesMXBean.java is the interface implemented by
EnrichmentProperties.java

EnrichmentXml.java and ManagedObjectToSite.java are data structure

to store the enrichment information.

144

Package com.hp.uca.expert.vp.pd.core

ActionsFactoryGeneralBehavior.java contains an example of method
whatToDoWhenAlarmIsJustInserted() being overridden to do enrichment.

MyGeneralBehavior.java & MyGeneralBehaviorExample.java also contain examples
of methods of the GeneralBehaviorInterface being overridden. See 7.4.5

MyProblemDefault.java illustrates methods of the ProblemInterface being

overridden for a subset of problems. See 7.4.3

Package com.hp.uca.expert.vp.pd.problem

Problems’ customizations

In src/main/java, problems’ customization classes are available in package
com.hp.uca.expert.vp.pd.problem.

pd-example has four main problems. Out of these four problems, have been
customized by writing Java code: Problem_BitError, Problem_Synch,
Problem_Power, and one has been customized by writing XML (in
src/main/resources/valuepack/conf/ProblemXmlConfig.xml):

XmlGeneric_Synch

File overrides

Problem_BitError.java calculateProblemAlarmAdditionalText

computeProblemEntity

isAllCriteriaForProblemAlarmCreation

Problem_Sync.java

Same as Problem_BitError +

calculateProblemAlarmEventTime

Problem_Power.java

Same as Problem_BitError +

calculateProblemAlarmSeverity

isInformationNeededAvailable

isMatchingProblemAlarmCriteria

Problem_BitError_MyProblemDefault.j
ava

Same as Problem_BitError +

calculateProblemAlarmSeverity

Problem_ActionsFactory.java Same as Problem_BitError +

isMatchingSubAlarmCriteria

isMatchingTriggerAlarmCriteria

145

pd-example, content of src/test/java

This directory contains the source code of JUnit tests used to simulate the behavior
of the pd-example value pack. It also contains Actions Factory customization
examples.

Table 28 - src/test/java: the source code of the tests

Package ft.actionsfactory

A Problem Detection Value Pack receives alarms from a Network Management
System (NMS), does some processing, and has to ask the NMS to execute some
actions. The list of actions that are supported is present in the SupportedActions
java interface. The SupportedActions interface defines methods such as
createProblemAlarm(), terminateAlarm(), clearAlarm(), …

The ActionsFactory.java class is a nutshell implementation of the SupportedActions
interface.

Problem Detection provides TeMIPActionsFactory.java, a real implementation of
SupportedActions for the case the NMS is TeMIP.
For cases where the NMS is not TeMIP, it is required to write an implementation of
the SupportedActions interface on the model of the MyActionsFactory.java.

MyActionsFactoryCallback.java contains the callbacks methods that the

NMS must call after executing some of the actions.

A Problem Detection Value Pack may also need to create and manage trouble
tickets. The possible interactions between the Problem Detection Value Pack and a
trouble ticketing system are listed in the
SupportedTroubleTicketActions.java interface. The

SupportedTroubleTicketActions interface defines methods such as
createTroubleTicket(), closeTroubleTicket(), …

The TroubleTicketActionsFactory.java class is a nutshell implementation of the
SupportedTroubleTicketActions interface.

146

Problem Detection provides TeMIPTroubleTicketActionsFactory.java, a real
implementation of SupportedTroubleTicketActions for the case the trouble
ticketing system is HP Service Manager (accessed through TeMIP)

For cases where the trouble ticketing system is not HP Service Manager, it is
required to write an implementation of the SupportedTroubleTicketActions
interface on the model of the MyTroubleTicketActionsFactory.java

MyTroubleTicketActionsFactoryCallback.java contains the callbacks

methods that the trouble ticketing system must call after executing some of the
requests.

ActionsFactoryTest.java is a test file that simulates the sending of some

alarms and then checks that the necessary actions have been emitted.

Package ft.all

PDFramework_sequencedTest.java is a test file. It sends alarms

corresponding to the four problems Problem_BitError, Problem_Synch,
Problem_Power and XmlGeneric_Synch. It checks that problems are detected, that
Problem Alarms are created, that sub-alarms are tagged, that number of groups
created is correct and that number of actions executed is correct.

Package ft.enrichment

MissingInfoAlarmPowerTest.java is a test file. It sends alarms that need to

be enriched. It checks that the enrichment was successful.

pd-example, content of src/main/resources

Table 29 - src/main/resources: the configuration files of the example Value
Pack

Filters

Available in src/main/resources/valuepack/pd/ProblemDetection_filters.xml

There are the topFilters corresponding to the four problems:

147

 Problem_Synch

 Problem_Power

 Problem_BitError

 XmlGeneric_Synch

<topFilter name="XmlGeneric_Synch">

<topFilter name="Problem_Synch">

<topFilter name="Problem_Power">

<topFilter name="Problem_BitError">

Rules

Hidden under src/main/resources/valuepack/pd/ProblemDetection_Rules.pkg

Configuration

Files located in src/main/resources/valuepack/conf

context.xml This file can be used to declare that the Problem Detection Value
Pack pd-example relies on a customization of the GeneralBehavior

Enrichment.xml This file contains data to enrich alarms belonging to
Problem_Power

ProblemXmlConfig.xml This file contains the main policies, for example which
Actions Factory to use; and the problem specific policies, for example the time
window of each problem.

ProblemXmlConfig.xsd The XML schema of ProblemXmlConfig.xml

ValuePackConfiguration.xml This file is used to define the configuration of the
Value Pack and its Scenarios, the scenario policies, and the mediation flows

148

pd-example, content of src/test/resources

Table 30 - src/test/resources: the tests configuration files

com.hp.uca.expert.vp.pd.core

ProblemDefault implementation

Located in src/test/resources/com/hp/uca/expert/vp/pd/core/

ft.actionsfactory

Each JUnit test can run with a specific configuration for the Value Pack. For example
the JUnit test file named ActionsFactoryTest.java, will use ActionsFactoryTest-
context.xml (name must be <test file name>-context.xml) as context file.

This context file points at ProblemXmlConfig_ActionsFactory.xml, which is the
policies configuration file, and at ValuePackConfiguration_ActionsFactory.xml,

149

which is the main Value Pack configuration file which in turns points to
ProblemDetection_filters_ActionsFactory.xml, which is the filters file

Alarms.xml is the file describing the simulated alarms that will be sent by the test
ActionsFactoryTest.java.

ft.all

This package contains all the alarms files used by JUnit test file
PDFramework_sequencedTest.java. The JUnit test file
PDFramework_sequencedTest.java sends alarms from each alarms file one by one,
in sequence.

It would be possible to send all alarms simultaneously by using the file
Alarms_all_problems.xml

 Alarms_BitError_T1.xml alarms belonging to Problem_BitError and
grouped in a group different from the group where alarms coming from
Alarms_BitError_T2.xml will be gathered
Alarms_BitError_T2.xml alarms belonging to Problem_BitError and
grouped in a group different from the group where alarms coming from
Alarms_BitError_T1.xml will be gathered

 Alarms_Power_T1.xml alarms belonging to Problem_Power and grouped
in a group different from the groups where alarms coming from Alarms_
Power _T2.xml and Alarms_ Power _T3.xml will be gathered
Alarms_Power_T2.xml alarms belonging to Problem_ Power and
grouped in a group different from the groups where alarms coming from
Alarms_ Power _T1.xml and Alarms_ Power _T3.xml will be gathered
Alarms_Power_T3.xml alarms belonging to Problem_ Power and
grouped in a group different from the groups where alarms coming from
Alarms_ Power _T1.xml and Alarms_ Power _T2.xml will be gathered

 Alarms_Synch_T1.xml alarms belonging to Problem_Synch and grouped
in a group different from the group where alarms coming from
Alarms_Synch_T2.xml will be gathered
Alarms_Synch_T2.xml alarms belonging to Problem_Synch and
grouped in a group different from the group where alarms coming from
Alarms_Synch_T1.xml will be gathered

 Alarms_XmlGeneric_Synch_T1.xml alarms belonging to problem
XmlGeneric_Synch

 PDFramework_sequencedTest-context.xml the context file of
PDFramework_sequencedTest.java test file

ft.enrichment

 Alarms_power_only.xml the alarms file containing alarms sent by
MissingInfoAlarmPowerTest.java

 MissingInfoAlarmPowerTest-context.xml the context file of
MissingInfoAlarmPowerTest.java test file.

150

Like any UCA for EBC Value Pack, the pd-example Value Pack, if deployed, can send
action requests to be executed by the mediation layer associated with UCA for EBC
Server, namely: OSS Open Mediation V6.0.

The actions are executed by a Channel Adapter (specific to a target application) on
the mediation layer. Action replies are then returned to the pd-example Value Pack.

UCA for EBC Value Pack scenarios use web services to communicate with the Action
Service web service of a Channel Adapter, typically the UCA for EBC Channel
Adapter.

For these actions to be properly routed to the mediation layer and then to the
correct Channel Adapter and target application, the file ActionRegistry.xml must be
configured correctly.

For details on how to configure the ActionRegistry.xml please refer to the [R11]
UCA for EBC Administration, Configuration and Troubleshooting Guide, and in
particular to the ‘uca-ebc.properties file configuration’ chapter.

ActionRegistry.xsd

is the XML schema for ActionRegistry.xml.

log4j.xml

contains the different log levels that can be configured for the entire set of JUnit
tests of the pd-example Value Pack.

uca-ebc.properties

contains the different properties that can be configured for UCA -EBC Server. This
file generally does not need to be modified. Please refer to the [R11] UCA for EBC
Administration, Configuration and Troubleshooting Guide, and in particular to the
‘ActionRegistry.xml file configuration’ chapter

151

Annex C.

PD Advanced customization

Problem Detection behavior customization

As seen in chapter 7.4 it is possible to modify the default behavior of Problem
Detection Value Packs.

The behavior can be modified

 per problem

 per family of problems

 for all problems

 for non problem specific matters

Per problem

Modifying the behavior of Problem Detection for one given problem, is done
through overriding some of the methods of the ProblemInterface in the problem’s
customization class.

Per family of problems

Modifying the default behavior of Problem Detection for a set of problems, is done
in two steps:

1st step -- creation of a MyFamilyOfProblems (this name is given as an example)
customization class that implements some overriden methods of the
ProblemInterface.

2nd step – for each problem in the family, creation of the problem’s customization
class that extends the MyFamilyOfProblems customization class.

For all problems

Modifying the default behavior of Problem Detection for all problems is identical as
doing it for a family of problems. The only difference is that all problems’
customization class must extend one “MyAllProblemsDefault” (this name is given
as an example) class

For non problem specific matters

Problem Detection framework offers the possibility to modify some behaviors not
linked to any problem, through the creation of a customization class like
MyGeneralBehavior (name is given as an example), and overriding methods of the
GeneralBehaviorInterface interface such as
whatToDoWhenProblemDetectionIsInitialized(),
whatToDoWhenNewAlarmIsJustInserted()

It is also required to modify the context.xml file in the
src/main/resources/valuepack/conf/ folder to tell Problem Detection that

152

the customized implementation of the methods of the GeneralBehaviorInterface
have to be found in and only in MyGeneralBehavior class. It is therefore pointless
to override any GeneralBehaviorInterface method anywhere else other than in the
class specified in the context.xml file.

GeneralBehaviorInterface defines methods such as
“whatToDoWhenProblemDetectionIsInitialized()” that are not specific to

any problem, and are not invoked by the Problem Detection framework on a
problem object. It is therefore useless to provide an implementation of those
methods in the class of customization of the problems.

The figure below shows an example of

 a “per problem” customization => Problem1.java

 a “per family of problems” customization => MyFamilyOfProblems.java for
Problem2 & Problem3

 a “non problem specific” customization => MyGeneralBehavior.java

Figure 33 - schema of implementation of the main Problem Detection interfaces

153

Problem Entity, Multiple Problem Entities, Problem key
Problem Entity / Problem Entities definition

For each alarm passing the filters, Problem Detection will calculate a single or
multiple problem entities. This or these problem entities represent the “module(s),
element(s), service(s), …” affected.

For example

1) Alarm reporting the crash of a processor
=> possible problem entity : the processor ID

2) Alarm reporting the fact that a server is unavailable
=> possible problem entity: the server name

3) Alarm reporting a pipe cut between two machines
=> possible problem entities: machine A, machine B

Problem Key definition

As mentioned in the previous paragraph, each alarm passing the filters will have
one or several problem entities. To this problem entity, or to each of these problem
entities will be associated one problem key.

What is this problem key used for? It defines a perimeter equal or larger than the
problem entity. All alarms who passed the same filters, and who share a same
problem key, will be considered for potential grouping.

For example

1) Alarm reporting the crash of a processor
=> possible problem entity : the processor ID
=> possible problem key: the server in which the processor is

2) Alarm reporting the fact that a server is unavailable
=> possible problem entity: the server name
=> possible problem key: the server name (same as problem entity)

3) Alarm reporting a pipe cut between two machines
=> possible problem entities: machine A, machine B
=> possible problem key: the site containing machine A, the site containing
machine B

Role of Problem Entity / Problem Entities / Problem Key in grouping

When grouping alarms of a type of problem, the problem entit(y)ies of those
alarms will be considered.

Case 1 – All the alarms have the same {problem entity} and same [problem key]
For instance, if the following alarms have been received

Alarm1: Destination Host Unreachable {lotus.gre.hp.com} [lotus.gre.hp.com]

Alarm2: server down {lotus.gre.hp.com} [lotus.gre.hp.com]

Alarm3: fans stopped working {lotus.gre.hp.com} [lotus.gre.hp.com]

154

In this simplest case, all alarms have the same problem key, so they will be
considered for grouping. They also have the same problem entity so they will be
grouped.
The group will also be given this same problem entity.

Case 2 – All the alarms have the same [problem key] and a similar {problem entity}

For instance, if the following alarms have been received

Alarm1: Destination Host Unreachable {lotus.gre.hp.com} [lotus.gre.hp.com]

Alarm2 (Trigger alarm) : Network Interface Controller down
{lotus.gre.hp.com__NIC_0} [lotus.gre.hp.com]

Alarm3: 8P8C connector down {lotus.gre.hp.com__NIC_0__conn1}
[lotus.gre.hp.com]

In this case, all alarms have the same problem key, so they will be considered for
grouping. They also have a similar problem entity: all problem entities are
superstring or substring of the problem entity of the trigger alarm. The overridable
method compareProblemEntities decides whether each alarm should be part

of the group or not.
The group will be given the problem entity of the trigger alarm :
lotus.gre.hp.com__NIC_0

Case 3 – Some alarms have multiple {problem entities}

For instance, if the following alarms have been received

Alarm1: remote site not accessible {site GRE} [lotus.gre.hp.com]

Alarm2 (Trigger alarm) : Broken pipe {site GRE, site VBE} [lotus.gre.hp.com,
nenufar.vbe.hp.com]

Alarm3: remote site not accessible {site VBE} [nenufar.vbe.hp.com]

The connection between the two machines lotus and nenufar, and therefore the
connection between the two sites GRE and VBE, is broken.

If the property “sameGroupForAllProblemEntities” is set to false (default value),
two groups will be created:

155

Group 1 (groupname = <p> problem name </p> <e> lotus.gre.hp.com </e>
 group keys = <p> problem name </p> <k> site GRE </k>
containing alarm 1 and alarm 2

Group 2 (groupname = <p> problem name </p> <e> nenufar.vbe.hp.com </e>
 group keys = <p> problem name </p> <k> site VBE </k>
containing alarm 2 and alarm 3

If the property “sameGroupForAllProblemEntities” is set to true, only one group
will be created:

Group 1 (groupname = <p> problem name </p> <e> lotus.gre.hp.com </e> OR <p>
problem name </p> <e> nenufar.vbe.hp.com </e> (random choice)
 group keys = <p> problem name </p> <k> site GRE </k>
 <p> problem name </p> <k> site VBE </k>
containing alarm 1, alarm 2, alarm 3

ActionsFactory implementation

A Problem Detection Value Pack needs to send some actions to the various NMS it
takes alarms from. For example, a Problem Detection Value Pack needs to tell a
particular NMS to clear an alarm, or to create a Problem Alarm.

The set of actions Problem Detection framework is susceptible to invoke is defined
in the SupportedActions interface. See [R6] UCA for EBC Inference Machine –
JavaDoc (C:\%UCA_EBC_DEV_HOME%\apidoc\inference-machine\index.html)

A Problem Detection Value Pack needs to implement the SupportedActions
interface for each of the NMS it is connected to.

For example if a Problem Detection Value Pack receives alarms from TeMIP, SCOM
and SMARTS, it will have to provide three implementation of the SupportedActions
interface.

The implementations of the SupportedActions interface must be done by extending
the abstract class com.hp.uca.expert.vp.pd.actions.ActionsFactory

which provides some common code.

Example of the TeMIP Actions Factory

UCA-EBC Problem Detection provides the implementation of the SupportedActions
interface for TeMIP in the uca-evp-pd-fwk.jar. Below is an extract of the
TeMIPActionsFactory class showing how the clearAlarm() method is implemented

public class TeMIPActionsFactory extends ActionsFactory implements
 SupportedActions {

@Override
public Action clearAlarm(Action action, Scenario scenario, Alarm alarm,
ProblemInterface problem) throws Exception {

156

 action.addCommand(“directiveName”, “CLEARALARM”);

 action.addCommand(“entityName” alarm.getIdentifier());

 action.addCommand(”UserId”, UCA_EXPERT_ACTION_ID + action.getActionId());

 createAndSetCallback(action, scenario, TeMIPActionsFactoryCallbacks.class,
"clearAlarmCallback", scenario, action, alarm);

 return action;
}

Note that the method createAndSetCallback is defined and implemented in
com.hp.uca.expert.vp.pd.actions.ActionsFactory

Below is an extract of the TeMIPActionsFactoryCallbacks class showing how the
clearAlarmCallback method set in the TeMIPActionsFactory class, is implemented

public class TeMIPActionsFactoryCallbacks {

 public static void clearAlarmCallback(Scenario scenario, Action action,
 Alarm referenceAlarm) {

 switch (action.getActionStatus()) {
 case Failed:
 String rawText = null;
 if
(action.getListActionResponseItem() != null
 && action.getRawText() != null) {
 rawText =
XmlUtils.xmlToString(action.getRawText());
 }

 if (rawText != null) {
 if
(rawText.contains(SOURCE_OF_THE_ERROR_CLEAR_ALARM)) {
 if (LOG.isDebugEnabled())
{
 LOG.debug(ALARM_WAS_ALREADY_CLEARED
_FORCING_ACTION_STATUS_TO_COMPLETED);
 }

 action.acknowledgeActionFailure();
 } else if
(rawText.contains(ENTITY_NON_EXISTENT)) {
 if (LOG.isDebugEnabled())
{
 LOG.debug(ALARM_WAS_DELETED_FORCING
_ACTION_STATUS_TO_COMPLETED);
 }

 action.acknowledgeActionFailure();
 }
 }
 break;

 default:
 break;
 }

 if (LOG.isTraceEnabled()) {

157

 LogHelper.exit(LOG,
"clearAlarmCallback()");
 }
 }

B3.2 Example of a non-TeMIP Actions Factory

Any Actions Factory implementation class needs to implement the
SupportedActions interface and extend the ActionsFactory class

Among the methods of the SupportedActions interface the role of the three
following methods is less obvious, so here are some explanations.

associateAlarmsForHistoryNavigation(Action action, Scenario scenario, Group
group, Collection<Alarm> children, ProblemInterface problem)

is the method used to tell the NMS that all children alarms have to be grouped
together under a problem alarm

In case the NMS is TeMIP, associateAlarmsForHistoryNavigation will invoke the
TeMIP directive GROUPALARMS

In the case of a non-TeMIP NNMS, there maybe one dedicated method to group
children alarms with a problem alarm, or maybe it is done through setting some
field of the alarms to be grouped.

In any case associateAlarmsForHistoryNavigation is the place where to invoke the
one or several NMS methods to achieve grouping

dissociateAlarmsForHistoryNavigation is the reverse method of
associateAlarmsForHistoryNavigation.

Is the method to use when the children alarms should not be grouped any longer
under the problem alarm of a given group.

setHistoryNavigation(Action action, Scenario scenario, Alarm alarm, Qualifier
qualifier)

is the method to set the field of the alarm indicating the alarm is a subalarm, or a
problem alarm, or a candidate alarm, or an orphan alarm

Even if you don’t need to modify the alarms in your NMS with this information, you
at least need to update the alarm in the Working Memory of Problem Detection

Below we have taken the example of an Actions Factory for a NMS called
MyCOolNMS

public class MyCOolNMSActionsFactory extends ActionsFactory implements
 SupportedActions {

 @Override
 public Action createProblemAlarm(Action action, Scenario scenario, Group group,
ProblemInterface problem, Alarm alarm) throws Exception {

158

 String referenceAlarm = group.getTrigger().getIdentifier();
 action.addCommand("METHOD", "createProblemAlarm"); // for example only
 action.addCommand("REFERENCE_ALARM", referenceAlarm); // for example only

 [...]

 return action;
 }

The implementation of each method of the SupportedActions interface
(createProblemAlarm() method in the above example) must fill the action to be
sent to the NMS

The javadoc of the ActionRequest class is given at
[R7] Unified Correlation Analyzer for Event Based Correlation – JavaDoc UCA Actions
(C:\%UCA_EBC_DEV_HOME%\apidoc\uca-mediation-action-client\index.html)

Basically, you need to add the right commands in the form of key/value pairs to the
action object that is passed

What to put in the action, what commands… depends on what your MyCOolNMS
Channel Adapter expects.

How Actions Factory are referenced and invoked

Suppose your UCA-EBC Problem Detection Value Pack is connected to two NMS :
Smarts and SCOM.

You have implemented one Actions Factory for each of these NMS.

Now when it needs to send an action, for example when it needs to create a
Problem Alarm, Problem Detection framework will need to know which actions
factory to use, and which NMS to target.

The ProblemXmlConfig.xml of your Value Pack (that could look like the one given in
the example below) will associate an action name and an action class

<ProblemPolicies xmlns="http://config.pd.vp.expert.uca.hp.com/">
 <mainPolicy>
 [. . .]
 <actions>
 <defaultActionScriptReference>Exec_localhost</defaultActionScriptReference>
 <action name="SMARTS">
 <actionReference>Smarts_Notif_localhost</actionReference>
 <actionClass>com.acme.af.SmartsActionsFactory</actionClass>
 [. . .]
 </action>

 <action name="SCOM">
 <actionReference>SCOM_Alert_localhost</actionReference>
 <actionClass> com.acme.af.SCOMActionsFactory</actionClass>
 [. . .]
 </action>
 </actions>

http://config.pd.vp.expert.uca.hp.com/

159

 [. . .]

For a given action to do on a given alarm, the Actions Factory to invoke will be
found thanks to the method below available in the ProblemDefault.java and in your
Problem customization classes if you have defined it.

public SupportedActions chooseSupportedActions(Alarm alarm,
ProblemInterface problem)
[...]
 SupportedActions supportedActions =
getSupportedActions().get(alarm.getSourceIdentifier());
[...]

In the code snipped above, the action name is taken from the
“alarm.getSourceIdentier()”

So if in the alarm, the field sourceIdentifier == SMARTS, then the actions Factory
chosen will be the one having <action name="SMARTS"> in
ProblemXmlConfig.xml, i.e. com.acme.af.SmartsActionsFactory

And the Action Reference will be Smarts_Notif_localhost

And to know which NMS to target, Problem Detection will look at the
ActionRegistry.xml located at:
${UCA_EBC_INSTANCE}/conf/ActionRegistry.xml

that could look like this example below

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<ActionRegistryXML xmlns="http://registry.action.mediation.uca.hp.com/">

<MediationValuePack MvpName="scom"

MvpVersion="1.0"

url=http://localhost:26700/uca/mediation/action/ActionService?WSDL

brokerURL="failover://tcp://localhost:10000">

<Action actionReference=" SCOM_Alert_localhost ">
<ServiceName>alertsDirective</ServiceName>

<NmsName>scom_host</NmsName>

</Action>

[...]

</MediationValuePack>

<MediationValuePack MvpName="smarts"

MvpVersion="1.0" url=http://localhost:26700/uca/mediation/action/ActionService?WSDL

brokerURL="failover://tcp://localhost:10000">

<Action actionReference=" Smarts_Notif_localhost ">
<ServiceName>notificationDirective</ServiceName>

<NmsName>localhost</NmsName>

</Action>

</MediationValuePack>

</ActionRegistryXML>

http://registry.action.mediation.uca.hp.com/
http://localhost:26700/uca/mediation/action/ActionService?WSDL
http://localhost:26700/uca/mediation/action/ActionService?WSDL

160

Trouble Ticket Actions Factory

If you want your UCA-EBC Problem Detection Value Pack to be sending actions to a
Trouble Ticketing System, then you need

 To configure ProblemXmlConfig.xml located in the
src/main/resources/valuepack/conf/ in your development

environment.

 To configure ${UCA_EBC_INSTANCE}/conf/ActionRegistry.xml

 To implement a Trouble Ticket Actions Factory for your Trouble Ticketing
System (if it is not TeMIP)

 To develop a Channel Adapter for your Trouble Ticketing System (not
covered in this guide)

configuring the ProblemXmlConfig.xml

The ProblemXmlConfig.xml associates a TroubleTicketAction name with

- an actionReference that will be used to know which Trouble Ticketing system to
address

- an actionClass that will be used to know which implementation of the
TroubleTicketActionsFactory to use

<ProblemPolicies xmlns="http://config.pd.vp.expert.uca.hp.com/">
<mainPolicy>
[. . .]
<troubleTicketActions>
<troubleTicketAction name="TeMIP TT">
<actionReference>TeMIP_TT_Directives_localhost</actionReference>
<actionClass>com.hp.uca.expert.vp.pd.actions.TeMIPTroubleTicketActionsFactory</acti
onClass>
[. . .]
</troubleTicketAction>
</troubleTicketActions>

</mainPolicy>

By default, the name of the TroubleTicketAction to use for a given alarm, is to be
found in the filters of that alarm.

Below is an extract of the ProblemDefault.java
@Override
public SupportedTroubleTicketActions chooseSupportedTroubleTicketActions(
 Alarm alarm,
ProblemInterface problem) throws Exception {

 Set<String> tags = alarm.getPassingFiltersTags().get(

 problem.getProblemContext().getName
());

161

 if (tags != null) {
 for (String tTActionsName : getSupportedTroubleTicketActions().keySet()) {
 if (tags.contains(tTActionsName)) {
 supportedTroubleTicketActions =
getSupportedTroubleTicketActions().get(tTActionsName);
 }
 }
 }

Note that this behavior is overridable.

configuring the ActionRegistry.xml

The action registry will associate an actionReference with a Trouble Ticketing
System name, here called as NmsName.

ActionRegistry.xml
<MediationValuePack MvpName="temip" MvpVersion="1.0"
url="http://localhost:18192/uca/mediation/action/ActionService?WSDL"
brokerURL="failover://tcp://localhost:10000">

[. . .]

<Action actionReference="TeMIP_TT_Directives_localhost">
<ServiceName>ttDirective</ServiceName>
<NmsName>localTeMIP</NmsName>
</Action>

</MediationValuePack>

implementing a Trouble Ticket Actions Factory

If your Trouble Ticketing System is not TeMIP, then you need to implement a
Trouble Ticket Actions Factory

A Trouble Ticket Actions Factory is the place where you will implement the methods
of the SupportedTroubleTicketActions interface.
See [R6] UCA for EBC Inference Machine – JavaDoc
(C:\%UCA_EBC_DEV_HOME%\apidoc\inference-machine\index.html)

Some of the methods of this interface are createTroubleTicket,
closeTroubleTicket, …

The Trouble Ticket Actions Factory corresponding to the Trouble Ticketing System
you use, must implement SupportedTroubleTicketActions interface and extend the
TroubleTicketActionsFactory abstract class that contains some common code

162

The example below shows an extract of the implementation of the
createTroubleTicket() method

public class MyTroubleTicketActionsFactory extends
 TroubleTicketActionsFactory
implements SupportedTroubleTicketActions {

@Override
public Action createTroubleTicket(Action action, Scenario scenario,
 Group group,
ProblemInterface problem, Alarm referenceAlarm,
 List<Alarm>
alarmsToAssociate) throws Exception {

 if (LOG.isTraceEnabled()) {
 LogHelper.enter(LOG,
"createTroubleTicket()");
 }

 action.addCommand(“DIRECTIVE_NAME”, “CREATE_TICKET);
 //
 action.addCommand(“ENTITY_NAME”, getTtServerEntity());
 action.addCommand(“SELECTED_ALARM”, group.getProblemAlarm().getIdentifier());

The implementation of each method of the SupportedTroubleTicketActions
interface (createTroubleTicket() method in the above example) must fill the action
to be sent to the Trouble Ticketing System.

The javadoc of the ActionRequest class is given at
[R7] Unified Correlation Analyzer for Event Based Correlation – JavaDoc UCA Actions
(C:\%UCA_EBC_DEV_HOME%\apidoc\uca-mediation-action-client\index.html)

You need to add the right commands, in the format of key/value pairs, to the action
object that is passed

The content of the commands depends on what your Trouble Ticketing System
Channel Adapter expects and supports.

163

PD Value Pack example with Events
Only

Not yet available in IM SDK.

164

Annex E.

TSP Value Pack example

Not yet available in IM SDK.

165

Annex F.

TSP Advanced customization
As seen in chapter 8.2 it is possible to modify the default behavior of Topology
State Propagator Value Packs.

The behavior can be modified, as for PD Value Packs in the following way:

 per propagation

 per family of propagations

 for all propagations

 for non propagation specific matters

It is very similar to Problem Detection customization as described in Annex C

166

Annex G.

IM Value Pack example
As part of the Inference Machine Development Kit, an example Value Pack project,
named ‘im-example’, is available.

If deployed, the im-example Value Pack will be able to recognize 2 problems with
Problem Detection scenario:

 Problem_SwitchDown

 Problem_PhoneUnavailable

And several propagations based on above problems with Topology State
Propagator scenario:

 Propagation_Switch (generating Service Alarms)

 Propagation_Pool

 Propagation_Customer

 Propagation_VM

 Propagation_PhoneService (generating Service Alarms)

 Propagation_Server

 Propagation_Location

 Propagation_Service (generating Service Alarms)

 Propagation_Application

 Propagation_Shelf

 Propagation_CallServer

All of above problems and propagations have specific filters.

Problems generate Problem Alarms that are pushed to TSP scenario.

Propagations are hierarchized and only top-level ones are creating Service Alarms.
The Problem and Service Alarms are stored on disk using the DBActionsFactory.

Also, sample tests file that can be run with JUnit are contained. Those tests
simulate the deployed behavior of the im-example Value Pack without having to
actually deploy it. Alarms are injected into the Value Pack as though they came
from the network.

